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Oklahoma Ecological Observatory
Oklahoma state-wide land and water datasets from remote sensing

Gross primary production (2000-2015) Forest cover in 2010 (Landsat, PALSAR)
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pen surface water bodies in Oklahoma
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and pinel-based approach 1o analyze

Oklahoma contains the largest numbser of manmade lakes and reservoirs in the United States. Despite the imponance of
these apen surfice water boddies to public water supply, agriculture, thermoclestric power, tourism and recreation, it is
unclear how these water bodies have responded 1o ¢l
In this study, we used all available Landsat 5 and 7 images (I
e spatial-temporal variability of open surface water bodies and is relationship with

ate change and anthropogenic water exploitation in past decades.
000 scenes) from 1984 through 2015 and a water index-

climate and water exploitation. Specifically, the areas and numbers of four water body extents (the maximum, year-long,

Editor: [, Barcelo

Surface waner body

seasonal, and average extents) were analyzed to capture variations in water body area and number. Statistically significant
downward tremds were foursd in the maximurn, §
Keywords: Funhermore, these decreases were mainly atributed 10 the continued shrinking of large water bodies (> | km®). There
were also significant decreases in maximum and vear-long water body numbers, which suggested that some of the water

ar-long, and annual average water body arcas from 1984 through 2015,

Mappieg bodics were vanishing year by vear. However, remarkable inter-annual variations of water body arca and number were
Landsat also found. Both water body arca and namber were pesitively related 10 precipitation. and negatively related to temper-

Climate change

atare, Surface water withdrawals main]

¢ influenced the year-long water bodies. The smaller water bodies have a higher

risk of drying under a drier climate, which suggests that small water bodies are mare vulnerable under climate-warming

senarios.

© 2016 Published by Elsevier Ltd.

1. Introduction

Climate change and increased climate variability can strongly im-
pact surface water resources (Aheme et al, 2006; Ferguson and
Maxwell, 2012; Tulbure et al,, 2016), causing dramatic intra-annual
and inter-annual water variability (Hall et al., 2004; Mercier et al.,
2002}, which has been shown to have wide-ranging consequences on
human societies and ecosystems (Bates et al., 2008; Brown and Lall.
20WM3). Previous studies using remote sensing approaches have docu-
mented strong relationships between water body extent (area and num-
ber) with both climate variability and anthropogenic impacts of water
resources {Liu et al., 2013; Pekel et al.. 2016; Tao etal., 2015; Tulbure
and Broich, 2013; Tulbure et al., 2014).

Water body monitoring with remote sensing technigques has ad-
vanced along with an increase in freely available, high-resolution
satellite data. Many approaches were developed primarily based on
Landsat spectral bands, water indices and decision tree classification
algorithms (Fisher et al., 20016; Mueller et al., 20016; Tulbure and
Broich, 2013}, First, many water indices were defined to delineate
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water bodies with emphases on different feawres (Bhagat and
Sonawane, 2011; Boland, 1976; Crist, 1985, Gond et al., 2004;
McFecters, 1996; Rouse et al., 1974: Shine and Mesev, 2007; Xiao et
+ 2002; Ku, 2006) (se¢ supplementary online material 1 {SOM 1)),
or example, McFeeters (1996) defined the Normalized Diff,
Water Index (NDWI) usi
open water features. Xu (2006) modified the y
replacing the near infrared band with short-wave infrared band 1o sup-
press the noise of built-up land. mNDWI is one of the most widely
used water indices due 1o its good performance in water body delin-
eation across diverse landscapes (Du et al., 2012; Feyisa et al., 2014;
Hui et al., 2008; Ogilvie et al., 2015; Tao et al., 2015).

Second, previous remote sensing approaches have inconsistent ca-
pabilities of capturing water body variability. Many surface water
bodies have strong intra-annual dynamics, during for example, wet
and dry seasons (Alsdorf et al., 2007; Tulbure and Broich, 2013). But
some studics estimated water body extent from satellite images gath-
ered at a single time of the year, typically in the wet
etal, 20 omer et al,, 2015; Liu et al,, 2013), Ho
ficult to define the proper period due to uncertainties in intra-annual
wvariability of climate and anthropogenic effects. Some studies com-
pared the difference of water body area between the same time of se-
lected years to indicate the increasing or decreasing wrends of water
body area among those years (Du et al,, 2012; Homer et al,, 2015;

16,000 Landsat 5 & 7 images
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Water pixel number

Annual dynamics of open surface water bodies (areas and numbers) over
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Annual dynamics of woody plant encroachment in Oklahoma during 2000-2010

Remote Sensing of Environment 100 (2017) 233-245

(a) 1984-1989 (b) 1990-1994

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www. elsevier.com/locatefrse

Mapping the dynamics of eastern redcedar encroachment into grasslands @ —
during 1984-2010 through PALSAR and time series Landsat images
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Annual dynamics of gross and net
primary production (GPP and NPP)
of croplands and grasslands in
Oklahoma during 2000-2015

GPP, NPP --- >> forage biomass and grain yields
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RB £~ Geostationary Carbon Cycle Observatory

Science Goal and Objectives

The geoCARB Mission Goal

LOCKHEED MARTIN

OEES
JPL Aem ‘;%" 0 I?EE L‘QD

Science Objectives. geoCARB significantly improves
knowledge of terrestrial fluxes of CO, and CH, at
science and policy relevant scales, addressing 6
hypotheses (and enabling investigation of many more):
1.How do CO, emissions from cities scale with
population? Do bigger cities emit less CO, per capita?
2. How do CO, fossil fuel emissions over the CONUS
compare with its biotic (biological) uptake?

3. How does variation in (vegetation) productivity
control spatial patterns of terrestrial CO, uptake?

4. To what extent is Amazonia a CO, sink?

5. To what extent is Amazonia a CH, source?

6. Are CH, emissions estimates over CONUS too low?

Global Carbon Dioxide

MILBOURNE

Balance and Variability

Fossil fuels & cement | Atmosphere

0

s Ocean

=]
L___ILland-use change
I Land sink

iurces

=
-

|
e

iIs to provide observations and demonstrate methods to realize a
transformational advance in our scientific understanding of the global carbon cycle.

In 12/2016, NASA
selected the
GeoCarb mission.

Carbon Dioxide, CO,| Methane, CH, It is a 5-year

- 1959 316 ppm 1984 1656 ppb
May 2015 404ppm Mar2015 1827 ppb

Atmospheric CO, and CH, levels have continued to
rise in the industrial era. geoCARB will significantly
advance scientific knowledge of CO, and CH, sources,
sinks, and evolution over the Americas.

project and the
mission is
planned to be
launched in late

Importanceto NASA:
» Pace-setting science important to society 2021 or ea rly
* Measures both CO, and CH, 2022
» Geostationary complementto OCO-2 at LEO ’
» Ties to ASCENDS, GEOCAPE, GACM Missions
%rgposgdéré) the 2007 Decadal Survey by measuring
2an illi
. gddresses fJfI of 1t)heAt|7-n ovehrear_chin NAS{:\_ Eartsr; 5166 million
cience goals: ospheric mposition, i
Carbon Cycle and Ecosystems, 5) Climate Variability Investment over
and Change, and 7) Applied Science 2017-2022.
Precision Continental-Scale Measurements of
both Carbon Dioxide and Methane
; g SR8 Pl Berrien Moore
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cLosaL carson Anthropogenic perturbation of the global carbon cycle
PROJECT
Global carbon dioxide budget
(gigatonnes of carbon dioxide per year)
2006-2015
Data: CDIAC/NOAA-ESRL/GCP/Joos et al 2013/Khatiwala et al 2013
Fossil fuels & Atmospheric Lg;llr!:ld
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CDIAC; NOAA-ESRL; Le Quéré et al 2016; Global Carbon Budget 2016




Atmospheric CH, concentration

1850 |

1800 [
1750 [

1700 i

CH, mole fraction (ppb)

1650 |

1600

GLOBAL MONTHLY MEAN CH,

2 o " . 1 o A " "
December 2016

1980

What factor(s) drove the large increases in atmospheric CH, concentration after mid 2000s?
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Observations from space

Atmospheric CO,, CH, and SIF data from

analyses of satellite images and in-situ
observations

GOSAT, SCHIMARCH, OCO-2
missions

) o Solar Induced
(sampling missions)

Fluorescence

\

\
Ao \ arth
fro l I I O CO-2 Image Landsat L'an‘m%l!l’(E Nebagamon Google Earth
2016 Google \
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A Geostationary Solution — geoCARB

* Measures CO, CO,, O,, Instrument Complement
CH,,and SIF - —

e Scanning IR slit
spectrometer:
e 0.76pum (O, and SIF)
e 1.61um & 2.06um (CO,)
e 2.32 ym (CH, and CO)

e 3 km resolution (at SSP)

e Multiple Scans per day —
flexible scanning strategies
to meet different goals




Slit Projection
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NASA GeoCarb mission

Geostationary Carbon Cycle Observatory

Example of a daily ’ e e
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Monitor plant health and vegetation stress in North to South America

It measures solar-induced chlorophyll fluorescence (SIF), which is related to plant health and
vegetation stress.

mission

SIF (mW/m?/sr/nm)  e— e SSaNS
00 05 10 15 20 2.5  FluoSpecandEddy Flux

GOME-2 daily maximum SIF in 2010 Tower sites at KAEFS




Crowdsourcing and citizen science approach for in-situ georeferenced field photos

Global Geo-Referenced Field Photo Library

142210 photos

http://www.eomf.ou.edu/photos/

Please join thousands of citizen scientists to share your field photos that show your footprint
and document our Planet Earth
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Earth Observation and Modeling Facility at the University of Oklahoma

A. Remote Sensing Laboratory
B. Spatial Ecology and Epidemiology Laboratory

C. Computation and Visualization Laboratory
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science for a changing world
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