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Drought affects vegetation photosynthesis and growth. Many studies have used the normalized difference vege-
tation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in
satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of
drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index,
LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production
(GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled
GPP (GPPVPM) was compared with the GPP (GPPEC) derived from eddy covariance measurements. Precipitation
at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005–2006),
while the site in Illinois did not experience drought in the 2005–2007 study period. The EVI explained the season-
al dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing
season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than
were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function
(Wscalar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPPVPM
from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal
dynamics of GPPVPM agreed reasonably well with GPPEC. Our analysis shows that 8-day averaged values (temper-
ature, vapor-pressure deficit) do not reflect the short-term extreme climate eventswell, suggesting that satellite-
based models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

More accurate quantification of carbon fluxes across regions, conti-
nents, or the globe is necessary for a better understanding of feedbacks
between terrestrial ecosystems and the atmosphere (Peters et al.,
2007). Eddy covariance (EC) systems are considered one of themost ac-
curatemicrometeorologicalmethods atfield scales. The EC systems pro-
vide continuous measurements of net ecosystem CO2 exchange (NEE,
the balance between gross primary production, GPP, and ecosystem res-
piration, ER). The EC-measuredNEE is separated into twomajor compo-
nents: GPP and ER using different modeling approaches (Reichstein
et al., 2005), and GPP can be used to quantify crop productivity and to
understand temporal variability in productivity (Falge et al., 2002).
Moreover, accurate information on GPP and NEE of terrestrial ecosys-
tems is of great importance for monitoring changes in the atmospheric
, University of Oklahoma, USA.
CO2 concentration (Baldocchi et al., 2001). As a result, the number of EC
sites has increased in recent years. However, EC provides integrated car-
bon flux measurements only at the scale of the tower footprints, with
longitudinal dimensions ranging from a hundred meters to several
kilometers, depending on the height of the tower and vegetation, and
the homogeneity of the fetch (Schmid, 1994). Additionally, ECmeasure-
ments are difficult to interpret in heterogeneous or complex terrain
(Running et al., 1999). Further, the logistical requirements and cost of
EC systems prohibit extensive installation, leaving much of the world
unsampled. These challenges necessitate scaling-up EC observations to
regional or continental scales to examine terrestrial carbon cycling
over large areas (Xiao et al., 2008). One approach to regional extrapola-
tion of site-specific flux measurements is to use satellite observations
and climate data (Turner et al., 2003; Xiao et al., 2004). Consistent,
repetitive, and systematic observations of vegetation dynamics and
ecosystems from satellite remote sensing allow us to characterize vege-
tation structure and to estimate GPP or net primary production (NPP) of
ecosystems (Field, Randerson, & Malmström, 1995; Potter et al., 1993;
Ruimy, Saugier, & Dedieu, 1994). The Moderate Resolution Imaging
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Spectroradiometers (MODIS) on board theNASA's Terra andAqua satel-
lites provide global estimates of 8-day GPP at 1 km spatial resolution,
which is compatible with the footprint sizes of EC systems. Thus,
many EC sites provide GPP estimates with relevance for validating
MODIS products (Turner et al., 2003). Recently, several studies have
used satellite remote sensing data to upscale ECmeasurements to quan-
tify GPP over large areas (Alfieri et al. 2009; Beer et al., 2010; Papale &
Valentini, 2003; Wu, Chen, & Huang, 2011; Wu, Gonsamo, Zhang, &
Chen, 2014; Xiao et al., 2010; Xiao, Hollinger, et al., 2004; Yamaji et al.,
2008).

Satellite-based production efficiency models (PEMs) employ the
product of the absorbed photosynthetically active radiation (APAR)
and the light-use efficiency (LUE) to estimate GPP (Monteith, 1972;
Potter et al., 1993). Most of these PEMs consider fraction of APAR as a
linear function of normalized difference vegetation index (NDVI)
(Tucker, 1979), which is a normalized ratio between red and near-
infrared (ρ) bands, as defined below:

NDVI ¼ ρnir−ρred

ρnir þ ρred
: ð1Þ

However, NDVI has been reported to be sensitive to atmospheric condi-
tions, soil background, and saturation in multilayered and closed cano-
pies (Huete, Liu, Batchily, & Van Leeuwen, 1997). Thus, vegetation
photosynthesis model (VPM), a satellite-based PEM, uses the enhanced
vegetation index (EVI) as a function of fraction of APAR instead of NDVI
(Xiao, Hollinger, et al., 2004). The EVI employs an additional blue band
for atmospheric correction and is calculated from blue, red, and near-
infrared bands (Huete et al., 1997) as follows:

EVI ¼ G� ρnir−ρred

ρnir þ C1 � ρred−C2 � ρblueð Þ þ L
ð2Þ

where G (2.5) is the gain factor, C1 (6) and C2 (7.5) are band-specific at-
mospheric resistance correction coefficients, and L (1) is a background
brightness correction factor. VPM also uses land surface water index
(LSWI), which is calculated as the normalized difference between NIR
(0.78–0.89 μm) and SWIR (1.58–1.75 μm) spectral bands, as follows
(Xiao, Boles, Liu, Zhuang, & Liu, 2002):

LSWI ¼ ρnir−ρswir

ρnir þ ρswir
: ð3Þ

The potential of VPM for scaling-up GPP has been tested in temper-
ate, boreal, and moist tropical evergreen forests (Xiao, Hollinger, et al.,
2004; Xiao, Zhang, Hollinger, Aber, & Moore, 2005; Xiao et al., 2005;
Xiao et al., 2004), savanna woodlands (Jin et al., 2013), alpine ecosys-
tems (Li et al., 2007), a temperate grassland in Central Asia (Wu et al.,
2008), and corn (Zea mays L.) fields (Kalfas, Xiao, Vanegas, Verma, &
Suyker, 2011; Wang, Xiao, & Yan, 2010). However, this approach has
not been applied to the native grasslands, or prairie, of North America.
Prairie grasslands experience grazing, burning, and extreme climate
events like drought. However, EC studies over prairie have been report-
ed only at a very few sites (Fischer et al., 2012; Suyker, Verma, & Burba,
2003; Verma, Kim, & Clement, 1989). Accurate estimation of the spatial
and temporal patterns of GPP in grasslands at large spatial scales is nec-
essary to improve our understanding of the effects of fire and extreme
climatic events on these ecosystems (Fischer et al., 2012).

In this study, we tested VPM's estimation of GPP for two tallgrass
prairie ecosystems in Oklahoma and one in Illinois, for multiple years,
by integrating the MODIS images (8-day surface reflectance) and cli-
mate variables acquired from EC measurements. These study sites had
diverse climatic conditions during the study. The site in Illinois had
good rainfall during the study period (2005–2007), while precipitation
at the Oklahoma sites was 30% below the historical mean for both years
(2005–2006) of the study period. As a result, soil moisture at the
Oklahoma sites gradually declined, from more productive conditions
in 2005 to dry and less productive conditions by summer 2006
(Fischer et al., 2012). This change provided a useful opportunity to
evaluate VPM's capability for estimating GPP under severe drought con-
ditions. Thus, the major objectives of this study were to estimate the
seasonal dynamics and interannual variations in GPP within tallgrass
prairie, using VPM and to evaluate the response of vegetation indices
(EVI, NDVI, and LSWI) and GPP to drought conditions.

2. Materials and methods

2.1. Site description

2.1.1. The El Reno sites in Oklahoma
Two study sites [control (35.5465°N, −98.0401°W, 423 m asl) and

burned sites (35.5497°N, −98.0402°W, 423 m asl)] are located in
two adjacent 33 ha pastures at the United States Department of
Agriculture—Agricultural Research Service (USDA-ARS) Grazing Lands
Research Laboratory (GRL) in El Reno, Oklahoma. The landscape fea-
tures of the sites are shown in Fig. 1; an overview of the study sites is
presented in Table 1. Both pastures were not burned after 1990 and
they were grazed at equal, moderate stocking rates through the 2000
growing season. One site was burned on March 09, 2005; the other
plotwas left unburned. Dominant species at these sites are big bluestem
(Andropogon gerardi Vitman), little bluestem (Schizachyrium halapense
(Michx.) Nash.), and other grasses common to tallgrass prairie ecosys-
tems. Detailed descriptions of the sites can be found in Fischer et al.
(2012).

2.1.2. The Fermi site in Illinois
The third study site, a restored prairie in Illinois (41.8406°N,

−88.2410°W, 226 m asl), was farmed for more than 100 years and
then converted to prairie in 1989. The site is dominated by C4 grasses
and forbs. Detailed descriptions of the site can be found on the
AmeriFlux website (http://ameriflux.ornl.gov/fullsiteinfo.php?sid=
47). The landscape features of the site are shown in Fig. 1; a site over-
view is presented in Table 1. Because of the marginal fetch to the east,
the MODIS pixel included adjacent land parcels (Fig. 1). Immediately
east of the prairie is a strip of corn/soybean (Glycine max L.) rotation,
while just to the east of that is native grassland (distinct from prairie).

2.2. Eddy flux data and site-specific meteorological data

Site-specific climate and Level-4 CO2 flux data for the study siteswere
acquired from the AmeriFlux website (http://ameriflux.ornl.gov/). The
Level-4 data consists of CO2 flux (NEE and GPP) with four different
time steps: half-hourly, daily, 8-day, and monthly. These data were
gap-filled using the Marginal Distribution Sampling (MDS) method
(Reichstein et al., 2005). We used two years of data (2005 and 2006)
for the El Reno sites (AMF_USARc and AMF_USARb) and three years of
data (2005–2007) for the Fermi site (AMF_USIB2). Eight-day GPP data
(g C m−2 day−1) were compared with composite intervals of MODIS
data. Because the EC system does not measure GPP directly, the GPP is
estimated as:

GPP ¼ ERd−NEEd ð4Þ

where ERd is daytime ecosystem respiration and NEEd is daytime NEE.
The 8-day Level-4 datasets also contain air temperature, precipita-

tion, PAR, and soil water content. Seasonal dynamics and interannual
variations of PAR,mean air temperature, soil water content, and precip-
itation at all study sites are presented in Fig. 2.

2.3. Satellite data

As part of the NASA Earth Observing System,MODIS scans the entire
surface of the earth every 1–2 days and acquires data in 36 spectral
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Fig. 1. Landscapes of three eddy flux sites. The red boarder line corresponds to the size of one MODIS pixel at 500-m spatial resolution, and the red dot represents the location of the flux
tower.
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bands. Seven spectral bands are designed for the vegetation and
land-surface studies. These bands are blue (459–479 nm), green
(545–565 nm), red (620–670 nm), near infrared (NIR1: 841–875 nm,
NIR2: 1230–1250 nm), and shortwave infrared (SWIR1: 1628–1652 nm,
SWIR2: 2105–2155 nm). Among them, we used the blue, green, red,
NIR1, and SWIR1 bands to derive the spectral indices (EVI, NDVI, and
LSWI). The 8-day composite images are available at spatial resolutions
of 250 m (red and NIR1) and 500 m (blue, green, NIR2, SWIR1, and
SWIR2). Forty-six 8-day composite images are available in a year, begin-
ning with January 1st. Time series MOD09A1 data for one MODIS pixel
(500 m × 500 m), where a flux tower is located, were downloaded
from theMODIS data portal at the Earth Observation andModeling Facil-
ity (EOMF), University of Oklahoma (http://eomf.ou.edu/visualization/
gmap/). Three vegetation indices – NDVI, EVI, and LSWI – for each
MODIS 8-day composite were calculated according to Eqs. (1), (2), and
(3), respectively.

2.4. Description of VPM and parameter estimation

Xiao, Hollinger, et al. (2004), Xiao, Zhang, et al. (2004) developed a
satellite-based VPM that is different from the model used in the
MODIS-GPP (GPPMOD17A2) product. VPM estimates GPP based on the
conceptual partitioning of vegetation canopies into nonphotosynthetic
vegetation (npv) and photosynthetically active vegetation (pav) or
chlorophyll (chl).

FAPARcanopy ¼ FAPARchl þ FAPARnpv ð5Þ

where FAPARCANOPY is the fraction of PAR absorbed by the canopy,
FAPARchl is the fraction of PAR absorbed by chlorophyll, and FAPARnpv
is the fraction of PAR absorbed by nonphotosynthetic vegetation.
FAPARcanopy is generally estimated as a linear or nonlinear function of
NDVI (Prince & Goward, 1995; Ruimy et al., 1994):

FAPARcanopy ¼ aþ b� NDVI ð6Þ

where a and b are empirical constants. FAPARcanopy has also been
computed as a function of leaf area index (LAI) and a light extinction
coefficient (k) (Ruimy, Kergoat, & Bondeau, 1999).

FAPARcanopy ¼ 0:95 1−e−k�LAI
� �

ð7Þ
Table 1
Overview of the study sites.

Site code Site name Lat, lon (flux tower) Data used

US-ARc El Reno control (Oklahoma) 35.5465
−98.0401

2005–2006

US-ARb El Reno burned (Oklahoma) 35.5497
−98.0402

2005–2006

US-IB2 Fermi Prairie (Illinois) 41.8406
−88.2410

2005–2007
However, in VPM, FAPARchl is estimated as a linear function of EVI as
given in Eq. (8) where the coefficient α is set to 1.0 (Xiao, Hollinger,
et al., 2004).

FAPARchl ¼ α � EVI ð8Þ

In VPM, GPP is computed as follows:

GPP ¼ εg � FAPARchl � PAR ð9Þ

where εg is the light-use efficiency [LUE, g Cmol−1 photosynthetic pho-
ton flux density (PPFD)] which is reduced by nonoptimal temperature
or water stress:

εg ¼ ε0 � Tscalar �Wscalar ð10Þ

where ε0 is the apparent quantum yield or maximum light-use efficien-
cy (g Cmol−1 PPFD), and Tscalar andWscalar are the down-regulation sca-
lars (ranging between 0 and 1) to account for the effects of temperature
and water stress on the LUE, respectively.

The site-specific ε0 can be obtained from the analysis of the NEE–
PPFD relationship at eddy flux tower sites or can be obtained from a
survey of the literature (Ruimy, Jarvis, Baldocchi, & Saugier, 1995). In
this study, the ε0 value was estimated using the following rectangular
hyperbolic light-response function (NEE–PPFD relationship):

NEE ¼ ε0 � GPPmax � PPFD
ε0 � PPFDþ GPPmax

þ ER ð11Þ

where GPPmax is themaximum canopy CO2 uptake rate (μmolm−2 s−1)
at light saturation, and ER is respiration rate. We fit Eq. (11) using
half hourly NEE and PPFD data, as shown in Fig. 3, for a one-week
period during peak growth. The largest observed ε0 value was 0.062 ±
0.0066 (standard error) mol CO2 mol−1 PPFD at the Fermi site during
the week June 24–30, 2007. The El Reno grasslands experienced
drought in both years of the study period; the site received 600 ±
20 mm and 620 ± 20 mm annual precipitation in 2005 and 2006,
respectively, while the average annual precipitation (1971–2000) for
the site was 860 mm. As a result, smaller ε0 values were observed at
the El Reno sites. The highest observed ε0 values were 0.035 ±
0.0018 mol CO2 mol−1 PPFD (July 8–15, 2005) at the El Reno control
site and 0.026 ± 0.001 mol CO2 mol−1 PPFD (June 24–31, 2005) at
Field size (ha) Dominant species References

33 Big bluestem, little bluestem Fischer et al. (2012)

33 Big bluestem, little bluestem Fischer et al. (2012)

26 C4 grasses and forbs
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Fig. 2. Seasonal dynamics and interannual variations of photosynthetically active radiation (PAR),mean air temperature, soilwater content (SWC in percentage), and precipitation at three
tallgrass prairie sites. Each data point represents an average value of 8-day composites.
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Fig. 3. Light–response curve function for a selected time period (June 24–31, 2007) at the
Fermi site. Each data point is a 30-minute daytime net ecosystem CO2 exchange (NEE)
value from towermeasurements, PPFD is photosynthetic photon flux density, ε0 is the ap-
parent quantumyield [the initial slope of the light response curve (mol CO2mol−1 of pho-
ton)], R2 is the coefficient of determination, and N represents the number of data points.
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the El Reno burned site. Thus, we selected the upper limit of the
highest ε0 (0.062 + 1.96 × 0.0066 = 0.075 mol CO2 mol−1 PPFD or
0.9 g C mol−1 PPFD) observed for the Fermi site as a maximum ε0,
and this single value was used to model GPP across all site-years.

Tscalar was estimated at each time step as in Terrestrial Ecosystem
Model (TEM) (Raich et al., 1991):

Tscalar ¼
T−Tminð Þ T−Tmaxð Þ

T−Tminð Þ T−Tmaxð Þ− T−Topt

� �h i2 ð12Þ

where Tmin, Tmax, and Topt are minimum, maximum, and optimal tem-
peratures (°C) for photosynthetic activity, respectively. The tempera-
ture range for photosynthesis is quite large. We sorted GPP for the
active growing season (May–August) over study periods for all three
sites separately to 11 different temperature classes at a range of 3 °C dif-
ference (b9, 9–12, 12–15, 15–18, 18–21, 21–24, 24–27, 27–30, 30–33,
33–36, and N36 °C), and computed mean temperature and GPP for
each temperature bin. From our analysis, Topt was around 30 °C for all
three sites (Fig. 4). In this study, Tmin and Tmax were set to −1 and
50 °C, respectively.

image of Fig.�2
image of Fig.�3
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The LSWI increases at the beginning of the growing season and
declines with plant senescence, resulting in positive values during the
active growing period (Fig. 5). However, LSWI values dropped below
zero even during the active growing period in 2006 at both El Reno
sites, owing to severe drought (Fig. 5). To better characterize the sea-
sonal evolution of LSWI at these sites, we acquired MODIS-derived
LSWI values for 13 years (2000–2013) and plotted the mean seasonal
cycle of LSWI (Fig. 6). Fig. 6 shows that long-term mean LSWI values
were consistently larger than zero (positive) from May to September
(growing season for grasses), but LSWI values in dry periods of the
2006 growing season were negative. Based on this observation, we pro-
posed two different approaches of Wscalar calculation for the normal
(LSWI N 0) and drought (LSWI b 0) conditions during the growing
season (May to September). For normal periods, the seasonal dynamics
of Wscalar were estimated using the following approach:

Wscalar ¼
1þ LSWI

1þ LSWImax
ð13Þ

where LSWImax represents themaximumLSWIwithin theplant growing
season. We calculated the mean seasonal cycle of LSWI over the study
period and then selected the maximum mean LSWI within the plant
growing season as an estimate of LSWImax as in Xiao, Hollinger, et al.
(2004). During 2005–2006, the LSWImax value was 0.176 for the El
Reno control site and 0.16 for the El Reno burned site. During 2005–
2007, the LSWImax value was 0.29 for the Fermi site.

For drought periods, we suggested a modifiedWscalar estimation ap-
proach as follows:

Wscalar ¼ long‐term LSWImax þ LSWI: ð14Þ

In this study, a maximum value of LSWI observed during the 2000–
2013 growing seasons was used as a long-term LSWImax. Those values
were 0.39 for the El Reno control site and 0.40 for the El Reno burned
site. Our proposed approach is similar to the one (Wscalar = 0.5 +
LSWI) proposed by He et al. (2014) for simulation of the rapid response
of carbon assimilation towater availability regardless ofwater condition
during the entire year. We proposed to replace 0.5 with a site-specific
long-term LSWImax, which helps measure a deviation from the normal
condition. Taking a value of LSWI (−0.06) at the El Reno control site
on August 5th 2006 as an example, Eq. (13) yielded a Wscalar value of
0.80, which did not reflect a severe drought condition as Wscalar ranges
from 0 to 1. As a result, the model overestimated GPP substantially
during droughts. The modified approach of Wscalar provided a value of
0.33 (Eq. (14)) and accounted for the rapid reduction in GPP during
the severe water stress.

2.5. VPM model performance evaluation

Tower-estimated (GPPEC) and VPM-modeled GPP (GPPVPM) values
were compared to assess the validity of the model. A linear regression
model was developed between 8-day composite GPPEC and GPPVPM
values. To evaluate the model agreement, three statistics RMSE (root
mean squared error), MAE (mean absolute error), and R2 (coefficient
of determination) values were used. Values of RMSE and MAE were
calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX j
i
GPPEC−GPPVPMð Þ2

j

vuut ð15Þ

MAE ¼
X j

i
GPPEC−GPPVRMj j

� �

j

2
4

3
5 ð16Þ

where j is the total number of observations.

2.6. A comparison with the standard MODIS-GPP product (MOD17A2)

The MODIS Land Science Team provides the standard MODIS-
GPP/NPP product (MOD17A2) to the public (Running, Nemani, Glassy,
& Thornton, 1999). MODIS-GPP (GPPMOD17A2) is computed as follows:

GPPMOD17A2 ¼ ε � FPARcanopy � PAR ð17Þ

where ε is the light use efficiency, FPARcanopy is the fraction of PAR
absorbed by the canopy and PAR is the photosynthetically active
radiation. FPARcanopy is derived from the standard FPAR and leaf area
index (LAI) product (MOD15A2) generated by the MODIS Land Science
Team (Myneni et al., 2002).

MOD17A2 and MOD15A2 data for the El Reno sites were
downloaded from the MODIS data portal at the Earth Observation and
Modeling Facility (EOMF), University of Oklahoma (http://eomf.ou.
edu/visualization/gmap/). These global datasets are available from
2000 to the present at 1 km spatial resolution and 8-day temporal res-
olution. But the GPPMOD17A2 data were unavailable for the Fermi site
when data files were downloaded from two different data sources:
the University of Oklahoma, EOMF website (http://eomf.ou.edu/
visualization/gmap/) and the Oak Ridge National Laboratory Distribut-
ed Active Archive Center (ORNL DAAC) website (http://daac.ornl.gov/
MODIS/modis.html).

3. Results

3.1. Seasonal dynamics of climate

Because the study sites at El Renowere located in two adjacent plots,
we can see highly similar seasonal dynamics for PAR, temperature, soil
water content, and precipitation (Fig. 2). Fig. 2 shows that the 2006
growing season was warmer and exceptionally drier compared with
the 2005 growing season; 8-day average air temperature reached a
maximum of about 28 °C in 2005 and about 31 °C in 2006 at both the
control and burned sites. In 2005, volumetric soil water content ranged
from18% to 35% at the control site and 22% to 40% at the burned site. The
higher soil–water content at the burned site may be due to the higher
soil organic matter content in that field. In 2006, soil–water content
ranged between 17% and 32% at the control site and between 17% and
34% at the burned site. The maximum PAR during the growing season
reached up to 24–26 mol m−2 day−1 at these sites.

http://eomf.ou.edu/visualization/gmap/
http://eomf.ou.edu/visualization/gmap/
http://eomf.ou.edu/visualization/gmap/
http://eomf.ou.edu/visualization/gmap/
http://daac.ornl.gov/MODIS/modis.html
http://daac.ornl.gov/MODIS/modis.html
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Fig. 5. Seasonal and interannual variations in observed gross primary production (GPPEC) and MODIS-derived vegetation indices (NDVI, EVI, and LSWI) at three flux sites.
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The Fermi site received good rainfall throughout entire study period
(2005–2007) (Fig. 2). However, the 2005 growing seasonwas relatively
warmer and drier compared to those of 2006 and 2007 (Fig. 2). The
Time (8-day periods)
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Fig. 6. Seasonal evolution of MODIS-derived land surface water index (LSWI) at the El
Reno sites. Bars represent standard errors of the means.
range of volumetric soil water content was 21–43% in 2005, 27–44%
in 2006, and 24–44% in 2007; 8-day average air temperature
reached peak values of 25–27 °C. The PAR reached peak values
of 26–27 mol m−2 day−1.

3.2. Seasonality of GPP and vegetation indices

The seasonal dynamics of GPP followed the samepatterns at all three
tower sites (Fig. 5). GPP started to rise (N1 g Cm−2 day−1) at the begin-
ning of April, reached a maximum during June–July, and then started to
decline, falling below 1 g C m−2 day−1 at the end of October. This sug-
gests that the prairie vegetation greened up in April and entered into a
senescence phase by the end of October. This finding is well supported
by the patterns of MODIS-derived vegetation indices as well (Fig. 5).
NDVI, EVI, and LSWI started to increase with the beginning of the
plant growing season, and started to decline with the beginning of se-
nescence, which corresponded with the increase and decrease of GPP.
However, some spikes in LSWI were observed in winter because of
snow cover. Similar to GPP, the vegetation indices also reached peak
values during the active growth phase (June–July). This suggests that
these vegetation indices are good indicators for identifying plant
phenology. In the following, we discuss the seasonality of GPP and
vegetation indices for individual sites separately.

image of Fig.�6
image of Fig.�5
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3.2.1. The El Reno control site
At this site, GPP was above 1 g C m−2 day−1 for six and half

months each year, from the beginning of April to mid-October
2005 and from mid-April to the end of October 2006. Vegetation
indices showed similar patterns, with higher values from April to
October. The thresholds of NDVI, EVI, and LSWI for the periods of
GPP N 1 g C m−2 day−1 were N0.35, N0.20, and N−0.16, respectively
in 2005, and N0.30, N0.20, and N−0.20, respectively in 2006. The max-
imum GPP (11.5 g C m−2 day−1) was observed in mid-July 2005, while
the EVI was about 0.57. The maximum EVI of 0.62 was observed in
the first week of June 2005. Similarly, the NDVI reached a maximum
(0.77) at the end of June 2005. In 2006, maximum GPP was lower
(~8 g C m−2 day−1) than in 2005, and it occurred from mid-May
to early June. The maximum EVI in 2006was about 0.48; themaximum
NDVI was 0.73 in mid-June.

3.2.2. The El Reno burned site
At this site, GPP was above 1 g C m−2 day−1 from the first week

of April to mid-October 2005 and a slightly shorter period, from
mid-April to the first week of October 2006. The thresholds of
NDVI, EVI, and LSWI for the periods of GPP N 1 g C m−2 day−1

were N0.43, N0.23, and N−0.12, respectively, in 2005, and N0.36,
N0.23, and N−0.15, respectively, in 2006. In 2005, the maximum GPP
(14.9 g C m−2 day−1) was observed during the third week of June
when EVI was ~0.50. The maximum EVI (0.6) and NDVI (0.77) were
observed in the thirdweek of July 2005. Similar to the control site, max-
imum GPP was lower (8.8 g C m−2 day−1) at this site in 2006 than in
2005; and earlier, with the maximum occurring in the first week of
June, when EVI was about 0.45. The maximum EVI in 2006 was 0.48,
and the NDVI was 0.62 in the last week of May.

3.2.3. The Fermi site
GPP was above 1 g Cm−2 day−1 for about six months, starting from

mid-April to mid-October, in all three years (2005–2007). However,
GPP declined very rapidly after July 2006 (Fig. 7). The drastic difference
in GPP pattern in 2006 compared to 2005 and 2007 was a result of an
infestation of white sweet clover (Melilotus alba) that dominated the
field. It died out completely by the end of July 2006, leaving very little
green vegetation after that, and resulting in the field being a carbon
source through the remainder of the growing season. The thresholds
of NDVI, EVI, and LSWI for the periods of GPP N 1 g C m−2 day−1 were
N0.36, N0.17, and N−0.21, respectively in 2005, and N0.44, N0.25, and
N−0.10, respectively in 2006, and N0.40, N0.22, and N−0.14, respec-
tively in 2007. The maximum GPP (10.6 g C m−2 day−1) in 2005
occurred during the second week of June, when the maximum EVI
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Fig. 7. Seasonal patterns of gross primary production (GPPEC) at the Fermi site. Data points
represent 8-day composite average values.
(0.58) and NDVI (0.82) were observed. In 2006, the maximum GPP of
13.4 g C m−2 day−1 was observed during the first week of July, when
EVI was 0.60. The EVI reached a maximum (0.69) in July's second
week, and the NDVI reached a peak (0.88) in July's third week in
2006. The maximum GPP in 2007 was 12.6 g C m−2 day−1 in the last
week of June, when EVI was ~0.60. The maximum EVI was 0.68, and
the NDVI was 0.84 in the second week of July.

3.3. Relationship between GPPEC and vegetation indices

Relationships between vegetation indices (NDVI and EVI) and GPPEC
for the individual growing seasonwere evaluated. The result shows that
NDVI explained over 50%, and EVI explained over 70%, of GPP variance
(Table 2). However, NDVI and EVI accounted for only 11% and 30% of
GPP variance in 2006 at the Fermi site. This was because the field was
infested and dominated by white sweet clover that year, and coverage
of other areas that were not much affected by the clover in the MODIS
pixel could have contributed for the poor correlation between vegeta-
tion indices and GPP in 2006. Thus, we thereafter dropped the 2006
growing season for the Fermi site from further analysis. When data
were pooled for both growing seasons (Fig. 8), NDVI and EVI accounted
for 62% and 75% of the variation in GPP, respectively, at the El Reno con-
trol site. Similarly at the El Reno burned site, NDVI and EVI accounted for
62% and 79% of GPP variance, respectively. At the Fermi site, NDVI and
EVI explained 54% and 68% of GPP variance, respectively, for the com-
bined 2005 and 2007 growing seasons (excluding 2006). The results
showed that EVI had a stronger linear relationship with GPP than did
NDVI.

3.4. Seasonal dynamics of GPPVPM and GPPEC

Seasonal dynamics of modeled GPP (GPPVPM) and GPPEC are com-
pared in Fig. 9. The result shows that the seasonal dynamics of GPPVPM
agreed reasonably well with the dynamics of GPPEC at all sites. Both
GPPEC and GPPVPM increased rapidly with the beginning of the growing
season, reached a maximum during the peak growth period, and
declined with the beginning of plant senescence. The seasonal peaks
of GPPVPM also match the seasonal peaks of GPPEC.

Simple linear regression models showed good agreement between
GPPVPM and GPPEC, and explained a significant amount of variation
in GPP at all sites (Table 3). The results show that VPM slightly
underestimated GPP at all sites (slopes were 0.89–0.98) in most years
(Table 3). Some large discrepancies between GPPEC and GPPVPM were
also observed. GPPVPM explained 83% and 75% of the variation in GPPEC
for the El Reno control and burned sites in 2005, respectively. But it
explained 70% of the variation for the control site and 44% of variation
for the burned site in 2006, the drought year, when the original Wscalar

estimation approach (Eq. (13)) was used. For the Fermi site, GPPVPM
accounted for 65% and 80% of the variation in GPPEC in 2005 and 2007,
respectively. RMSE and MAE values for the Fermi site were 2.03 and
1.62 g C m−2 in 2005, and 1.63 and 1.32 g C m−2 in 2007, respectively.

When we examined the influence of the modified approach of
Wscalar estimation (as shown in Eq. (14)) on drought events that there
were large discrepancies between GPPEC and GPPVPM for both El Reno
sites in 2006, VPM performance improved greatly (Tables 3 and 4). For
example, the R2 value for the simple linear regression between GPPEC
and GPPVPM for the El Reno burned site in 2006 increased from 0.44 to
0.91 (Table 3), and overestimation of GPP dropped to 11% from 38%
(Table 4). Similarly, RMSE and MAE dropped from 2.04 to 1.01 g C m−2

and from 1.49 to 0.80 g C m−2, respectively (Table 4).
Seasonally integrated GPPVPM over the growing season in 2005 and

2006 for the El Reno control site was 1311 and 757 g Cm−2, respective-
ly, while the seasonally integrated GPPECwas 1295 and 842 g Cm−2, re-
spectively (Table 4). Table 4 shows that seasonally integrated GPPVPM
over the growing season was similar in 2005 and 10% lower in 2006
than the GPPEC at the El Reno control site. At the El Reno burned site,

image of Fig.�7


Table 2
Comparison of simple linear regression models between vegetation indices [normalized
difference vegetation index (NDVI) and enhanced vegetation index (EVI)] and tower gross
primary production (GPPEC) during the active growing season (GPP N 1 g C m−2 day−1) at
three tallgrass prairie flux sites.

Site Growing season NDVI and GPPEC
(R2 value)

EVI and GPPEC
(R2 value)

El Reno control 2005 0.60 0.69
2006 0.61 0.75

El Reno burned 2005 0.54 0.72
2006 0.52 0.76

Fermi prairie 2005 0.43 0.65
2006 0.11 0.30
2007 0.57 0.71
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seasonally integrated GPPVPM was similar to total GPPEC (1513 g C m−2)
and 11% higher than the total GPPEC (734 g C m−2) over the 2005 and
2006 growing seasons, respectively. Similarly, the sum of GPPVPM was
4% lower than the sums of the GPPEC for the Fermi site in the 2005 and
2007 growing seasons.

3.5. MODIS GPP (GPP MOD17A2) and tower GPP (GPPEC)

GPPMOD17A2 was regressed with GPPEC to quantify the correla-
tion between them. Linear regression coefficients are provided in
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Fig. 8. Comparison of simple linear regressionmodels between vegetation indices (normalized
production (GPPEC) during the active growing season (GPP N 1 g C m−2 day−1) at three eddy fl
Table 3. GPPMOD17A2 explained 39% and 45% of the variation in
GPPEC for the El Reno control and burned sites in 2005, respectively.
However, GPPMOD17A2 explained only 10–12% of the variability in
GPPEC for these sites in the dry year (2006). The results show that
GPPMOD17A2 was substantially lower compared to GPPEC (slopes were
0.30–0.41). GPPMOD17A2 data were not available for the Fermi site
because the MOD17 algorithm uses MODIS Land Cover Type product
(MCD12Q1) as input and the Fermi site is classified as urban or built-
up category.

4. Discussion

Strong correspondence between seasonal patterns of the MODIS-
derived vegetation indices (EVI, NDVI, and LSWI) and GPPEC indicated
the potential of vegetation indices for identifying tallgrass prairie
phenology. However, vegetation indices showed slightly weaker rela-
tionships with GPPEC at the Fermi site compared to the El Reno sites
(Fig. 8). This was because the MODIS pixel at the Fermi site included
the strips of corn/soybean rotation and grasslands east of the flux
tower, as the fetch to the east was not sufficient (b300m). As in several
previous studies (Jin et al., 2013; Kalfas et al., 2011; Xiao, Hollinger,
et al., 2004), we observed a stronger linear relationship between EVI
and GPPEC than between NDVI and GPPEC (Fig. 8, Table 2). This finding
showed that EVI was more sensitive to changes in GPPEC than was
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ux sites. Simple linear regression models were highly significant (P b 0.0001).
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Fig. 9. A comparison of the seasonal dynamics and interannual variations of 8-day composite values of observed gross primary production (GPPEC) and modeled GPP (GPPVPM) at three
tallgrass prairie sites.
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NDVI. For example, the maximumGPPwas 11.5 g Cm−2 day−1 in 2005
and 8.5 g C m−2 day−1 in 2006 (26% drop), while similar values
(0.5%drop) ofmaximumNDVI (0.77 in 2005 and 0.73 in 2006)were ob-
served in both years at the El Reno control site. But EVI showed a larger
reduction (~23% drop) in 2006 (maximum EVI = 0.48) as compared to
Table 3
Linear regression coefficients and coefficient of determination (R2) of MOD17A2-based GPP (G
tower GPP (GPPEC) for three tallgrass prairie sites. Two different approaches (Eqs. (13) and (1
use efficiency) calculation was used for normal and drought periods. Slope and R2 value in brack
was not available for the Fermi site.

GPPVPM = a ×

Site Year Slope

El Reno control 2005 1.01
2006 0.91 (0.99)
2005–06 0.98 (1.0)

El Reno burned 2005 0.94
2006 1.08 (1.17)
2005–06 0.97 (0.99)

Fermi prairie 2005 0.89
2007 0.94
2005 and 2007 0.92
2005 (maximumEVI= 0.62). As a result, EVI performed better in track-
ing the changes in carbon uptake than did NDVI.

NDVI has been themost widely used index for remote sensing of veg-
etation over the last two decades. It has been used in many applications,
including net primary production (NPP) estimations [Carnegie-Ames-
PPMOD17A2) and vegetation photosynthesis model based estimates of GPP (GPPVPM) with
4)) of Wscalar (a down-regulation scalar to account for the effect of water stress on light
ets () represent the results when only Eq. (13) was used to determineWscalar. GPPMOD17A2

GPPEC GPPMOD17A2 = a × GPPEC

R2 Slope R2

0.83 0.41 0.39
0.85 (0.70) 0.30 0.12
0.86 (0.81) 0.37 0.40
0.75 0.36 0.45
0.91 (0.44) 0.33 0.10
0.84 (0.65) 0.36 0.5
0.65
0.80
0.74

image of Fig.�9


Table 4
Seasonally integrated sums of modeled and tower based gross primary production (GPP, g C m−2), root mean square error (RMSE, g C m−2 day−1), and mean absolute error
(MAE, g C m−2 day−1) for three tallgrass prairie sites. Two different approaches (Eqs (13) and (14)) of Wscalar (a down-regulation scalar to account for the effect of water stress on
light use efficiency) calculationwas used for normal and drought periods.GPPVPM, MAE, and RMSE values in brackets () represent resultswhen only Eq. (13)was used to determineWscalar.
The length of the growing season represents the period of GPP N 1 g C m−2 day−1.

Site Period GPPVPM (g C m−2) GPPEC (g C m−2) MAE (g C m−2) RMSE (g C m−2)

El Reno control Mar 30–Oct 16, 2005 1311 1295 1.07 1.38
Apr 15–Oct 24, 2006 757 (884) 842 0.83 (0.95) 1.09 (1.27)

El Reno burned Apr 5–Oct 16, 2005 1482 1513 1.44 1.83
Apr 15–Oct 16, 2006 817 (1013) 734 0.80 (1.49) 1.01 (2.04)

Fermi Prairie Apr 15–Oct 24, 2005 1085 1232 1.62 2.03
Apr 7–Oct 8, 2007 1308 1359 1.32 1.63
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StanfordApproach, CASA (Potter et al., 1993)], GPP estimations [Terrestri-
al Uptake and Release of Carbon, TURC (Ruimy, Dedieu, & Saugier, 1996),
GLObal Production Efficiency Model, GLO-PEM (Prince & Goward, 1995),
MODIS Photosynthesis, MODIS-PSN (Running, Nemani, Glassy, &
Thornton, 1999)], estimation of crop yields (Quarmby, Milnes, Hindle,
& Silleos, 1993), and droughtmonitoring (Peters et al., 2002). Our results
indicate that EVI could be a better index for remote-sensing-based
applications, especially for regions or time periods with low rates of
precipitation.

To link the seasonal dynamics of GPP and EVI with major environ-
mental drivers, we plotted air temperature, vapor pressure deficit
(VPD), GPP, and EVI for the El Reno burned site (Fig. 10). Temperature
and VPDwere higher in 2006 compared to 2005. Canopy CO2 exchanges
increase rapidly with the increasing temperature and VPD in the lower
Time (8-day periods)

Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  
12

15

18

21

24

27

30

33

V
P

D
 (

k
P

a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
V

I

0.2

0.3

0.4

0.5

G
P

P
E

C
 (

g
 C

 m
-2

 d
ay

-1
)

0

2

4

6

8

10

Temp
VPD
EVI 
GPP 

a) 2005

Time (8-day periods)

Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  

A
ir

 t
em

p
er

at
u
re

 (
o
C

)

9

12

15

18

21

24

27

30

V
P

D
 (

k
P

a)

0.0

0.4

0.8

1.2

1.6

2.0

E
V

I

0.2

0.3

0.4

0.5

0.6

0.7

G
P

P
E

C
 (

g
 C

 m
-2

 d
ay

-1
)

0

3

6

9

12

15

18

b) 2006

A
ir

 t
em

p
er

at
u
re

 (
o
C

)

Fig. 10. Seasonal dynamics of air temperature, vapor pressure deficit (VPD), gross primary
production (GPPEC), and enhanced vegetation index (EVI) during the 2005 and 2006
growing seasons for the El Reno burned site.
temperature andVPD ranges to reach amaximum, and decrease as tem-
perature and VPD increase beyond a certain threshold (Wagle & Kakani,
2014a). Duringmid-July to mid-August 2006, 8-day composite air tem-
perature reached up to 31 °C, with the maximum VPD 2.5 kPa. Higher
temperature and VPD caused a reduction in both GPP and EVI, but
GPP decreased more rapidly than EVI (Fig. 10b), suggesting that GPP
was more sensitive to drought than did EVI. A short-period severe
drought may not significantly affect EVI, but can limit GPP greatly, be-
cause of the stomatal closure control of photosynthesis at high VPD. Pre-
vious studies also have suggested that GPP is more sensitive to drought,
which in turn was more sensitive than ER (Shurpali, Verma, Kim, &
Arkebauer, 1995; Wagle & Kakani, 2013) and evapotranspiration
(Wagle & Kakani, 2014b). Light-saturated GPP and daytime averaged
canopy conductance decreased up to 90% under drought conditions at
Mediterranean evergreen sites (Reichstein et al., 2002).

From the characterization of the seasonal evolution of the MODIS-
derived LSWI for both El Reno sites, based on 13 years of available
data, we found that LSWI values were positive throughout the entire
growing season in normal years, but the values dropped below zero
during severe droughts, as shown in Fig. 6. This result indicates that
LSWI may be used as an indicator to track drought. At both El Reno
sites, EVI and LSWI showed a very strong correlation (r N 0.9) during
the growing season (May–September). However, the ratio of EVI to
LSWI altered greatly in 2006 (drought year), while it did not change
much in 2005 at both El Reno sites (Fig. S1), indicating the different
responses of EVI and LSWI to drought. When Wscalar was modified as
shown in Eq. (14) to account for severe drought, VPM performance im-
proved greatly in 2006 for both El Reno sites, yielding higher R2 values,
and smaller MAE and RMSE values (Tables 2 and 3). This is because
drought, high temperature, and high VPD are tightly linked to each
other. This modification of Wscalar for the severe drought period helped
to account for the reduction in GPP during periods of higher tempera-
ture and VPD.

Simulations by VPM of the six site-years showed good agreement
between GPPVPM and GPPEC; seasonally integrated GPPVPM ranged from
−5% to +5% of integrated GPPEC in most cases (Tables 3 and 4, Fig. 9).
Some discrepancies between GPPVPM and GPPEC can be attributed to
prediction error in VPM and estimation error or uncertainty in EC
measurements. There are a number of inherent errors/uncertainties in
EC measurements, and sources of uncertainties can be attributed to
systematic and random errors (Moncrieff, Malhi, & Leuning, 1996).
Errors due to the EC instrument system and due to stochastic nature
of turbulence, and uncertainty due to changes in footprint can be cate-
gorized into random errors (Mauder et al., 2013). Systematic errors in-
clude errors resulting from data processing, instrument calibration, and
unmet assumptions and methodological challenges (Mauder et al.,
2013). Numerous uncertainties are associated with gap filling of eddy
flux time series data (Richardson & Hollinger, 2007). Since eddy towers
do not provide directmeasurements of GPP, the partitioning of NEE into
GPP and ER also introduces substantial uncertainties (Hagen et al.,
2006). In some cases, GPP underestimation by VPM can be attributed
to lower input PAR values during cloudy periods. In fact, LUE increases
under cloudy conditions (Turner, Urbanski, et al., 2003). Inclusion of
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the corn/soybean strip in the MODIS pixel likely contributed to part of
the GPP disparity in the Fermi site. Large discrepancies between GPPVPM
and GPPEC in 2006 for both El Reno sites (using the original version of
Wscalar estimation as in Eq. (13)) can be attributed to a severe drought
in 2006. Both years of the study period (2005 and 2006) received sub-
normal precipitation, which led to even drier soils and greater VPDs in
2006. GPPMOD17A2 also explained only 10% of the variability in GPPEC at
this site in the 2006 growing season, while it explained 45% of the var-
iability in GPPEC during the 2005 growing season. These results indicate
the inadequacy of PEM in accounting for the limitation of drought on
GPP.

To analyze the response of CO2 flux to VPD, we examined the diurnal
courses of NEE and VPD across the active growing periods (May–August)
within the 2005 and 2006 growing seasons for the El Reno burned site
(Fig. 11). The diurnal peak value (monthly average) of VPD did not ex-
ceed 2.5 kPa in 2005, but in 2006 it reached up to 2.9 kPa in June,
3.9 kPa in July, and 3.5 kPa in August. As a result, NEE showed symmetric
diurnal NEE cycles in 2005, with a peak NEE in the afternoon (2–3 PM)
when the maximum radiation occurred. In contrast, NEE reached a max-
imum in the morning hours before radiation reached a peak due to the
limitation of high VPD on photosynthesis, and asymmetric diurnal NEE
cycles (reduction in NEE rates frommorning to afternoon hours at similar
light levels)were observed at higher VPD (N3 kPa). A previous study also
reported that VPD N 3.5 kPa constrained photosynthesis in tallgrass prai-
rie and the ecosystemwas a source of carbon even during the daytime in
north-central Oklahoma (Suyker & Verma, 2001). Our study indicates
that the large discrepancy between GPPVPM and GPPEC in drought condi-
tions can be attributed to the inability of the model to account for this
NEE hysteresis (asymmetric diurnal patterns of NEE).
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It is worth mentioning that satellite-based models use 8-day
averaged values of environmental variables. Our observation shows
that 8-day averaged values cannot account for short-term extreme
climate events. For example, observation of half-hourly values shows
that temperature reached up to 40 °C, and VPD reached a maximum
of 5.8 kPa, for the El Reno sites in 2006. But observation of 8-day aver-
aged values shows that temperature reached a maximum of 31 °C,
with the maximum VPD 2.5 kPa. From the analysis of half-hourly flux
measurements, we demonstrated that temperature around 30 °C is op-
timal for GPP in tallgrass prairie (Fig. 4), and photosynthesis was unaf-
fected up to VPD of 3 kPa (Fig. 11). VPM was thus unable to account
for the reduction in photosynthesis even in warm and dry periods. Our
results indicate that the use of 8-day averaged VPD values may not be
helpful, even though a number of PEM [3-PG (Law, Anthoni, & Aber,
2000), GLO-PEM (Prince & Goward, 1995), MODIS-PSN (Running,
Nemani, Glassy, & Thornton, 1999)] use VPD for the LUE calculation.
This finding suggests that the PEM simulation results could be improved,
especially under unfavorable climatic conditions, if the models were run
at hourly or daily scales.

GPPMOD17A2 was substantially lower than GPPEC at both El Reno sites
(Fig. 12), while the magnitude of GPPVPM was similar to that of GPPEC
(Fig. 9). VPM uses meteorological data from flux sites while MODIS-
GPP algorithm (MODIS-PSN) uses global climate data. Thus, a better
performance of VPM may partly be attributed to the local input data.
VPM estimates GPP based on PAR, EVI, and LUE (Eq. (9)) as fAPARchl is
estimated with EVI. From a biochemical perspective, vegetation cano-
pies are composed of photosynthetic and nonphotosynthetic vegeta-
tion, and correspondingly the FPARcanopy (FPAR%) is partitioned into
FPARchl + FPARnpv. FPARcanopy should be larger than the FPARchl (=EVI
b) 2006
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in VPM),which is supported by Fig. 12. Fig. 12 shows that FPARcanopywas
consistently larger than EVI over the entire growing seasons at both
sites. It indicates that a model using FPARcanopy in GPP calculations
may overestimate GPP. However, GPPMOD17A2 was substantially lower
than GPPVPM. This result indicates that underestimation of GPPMOD17A2

is associated with the smaller ε parameter. A single ε value per biome
type is used in the standard MODIS-GPP algorithm (MOD17A2), based
on the assumption that biome-specific physiological parameters do
not vary with space or time. However, several studies have shown
that the LUE in fact varies widely between biome types and in response
to environmental conditions (Gower, Kucharik, & Norman, 1999; Scott
Green, Erickson, & Kruger, 2003). The value of ε used in the MOD17A2
algorithm for grassland is 0.68 g C MJ−1 PPFD (~0.15 g C mol−1 PPFD,
with an approximate conversion factor of 4.6 between MJ PPFD and
mol PPFD), which is much smaller than 0.9 g C mol−1 PPFD used in
VPM in this study. Use of a single LUEmax value of 0.9 g C mol−1 PPFD
in VPM was able to model GPP across multiple sites and multiple
years in this study, because VPM employs down-regulation scalars,
Tscalar and Wscalar, to account for the effects of temperature and water
on the LUE, respectively. It is important to note that selection of LUE
values greatly impacts the accuracy of the models, and that estimation
of LUE has been problematic, since it varies with biome types and envi-
ronmental conditions. In a long term replicated experiment of loblolly
and slash pine stands, LUE varied by a factor of two over spatial and
temporal scales, with changes in soil nutrient availability and stand
development (Martin & Jokela, 2004). Thus, LUE values need to be cali-
brated rigorously for LUE-based PEM.More studies are needed to better
quantify LUE values across varying vegetation types andweather condi-
tions, which will in turn provide greater insight into the uncertainty of
PEMs. The use of a constant maximum value of LUE for estimating
GPP in the LUE-based PEM also introduces some biases since the use
of one single value of LUE for a biome type represents the mean condi-
tions for a particular type of vegetation and it cannot appropriately
reflect the contribution of shaded leaves to GPP (Zhang et al., 2012).

5. Conclusions

We used eddy flux CO2 data at three tallgrass prairie sites for a total
of six site-years to validate modeled GPP dynamics using a satellite-
based VPM. The eddy flux measurements showed that this ecosystem
has distinct spatial and temporal dynamics in GPP. However, our result
illustrates the potential of MODIS-derived vegetation indices and VPM
to track seasonal dynamics and interannual variations inGPP of tallgrass
prairie. On a growing season basis, the modeled GPP totals were gener-
ally within ±5% of the measured values. However, larger discrepancies
between GPPVPM and GPPEC occurred during noticeable dry spells as GPP
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wasmore sensitive to drought than were vegetation indices. This study
indicates the necessity of incorporating the effects of extreme climate
events on GPP into PEMs to be able to capture the rapid rise or fall in
GPP. Development of a modifiedWscalar function to account for the sub-
stantial reduction in GPP during droughts improved VPM's performance
to estimate GPP. The use of 8-day averaged values smooth out the effect
of short-term extreme climate events, suggesting that satellite-based
models should be run at hourly or daily intervals to account for the
effects of extreme climate events.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2014.05.010.
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