The Advanced Research Projects Agency – Energy: A New Paradigm in Transformational Energy Research

Chad Haynes

April 10, 2012

Evolution of ARPA-E

Mission

To enhance the economic and energy security of the U.S.

To ensure U.S. technological lead in developing and deploying advanced energy technologies

Advanced Transformative Technologies

Creating New Learning Curves

10 Technology Areas within First Open FOA

11 Focused Programs

Stationary Power

Biofuels: A tough nut to crack

7

Current pathways for liquid fuels from solar energy have low energy efficiency

Energy loss

- 513 Outside photosynthetically active spectrum
 - 49 Reflected and transmitted
 - 66 Photochemical inefficiency
 - 72 Thermodynamic limit
- 175 Carbohydrate Biosynthesis
 - 0 Photorespiration
- 25 Respiration

Zhu et al. *Current Opinion in Biotechnology* (2008) 19:153-159

Scalable production of macroalgae as a feedstock for isobutanol

Diminishing biomass pre-treatment costs through plant biotechnology

- 1. Agrivida^M crops produce dormant enzymes within the plant.
- 2. The dormant enzymes are activated after harvest.
- 3. The activated enzymes degrade the cell wall.

<u>Agrivida</u>

Developing high biomass dedicated energy crops with increased nitrogen use efficiency

4 HIGH BIOMASS NUE TRAITS

DEDICATED ENERGY CROPS

FIELD TRIALS IN 4 STATES

Economically-viable algae systems technologies suitable for deployment

Biocatalyst development

ARPA-E seeks new biofuels programs to address current biofuel production inefficiencies

Chemolithoautotrophs are at the core of a efficient and flexible Electrofuels platform

Source: Conrado, R.J., Haynes, C.A., Haendler, B.E., Toone, E.J., "Electrofuels: A New Paradigm for Renewable Fuels" 2011, Advanced Biofuels and Bioproducts (in press) (Lee, J., ed.): Springer, U.S.

H₂ consuming bacteria

Autotrophic production

Free fatty acid extraction

Final fuel upgrading

Electrochemically produced formate

Direct current/biocathodes

Geobacter metallireducens can form conductive biofilms on the surface of electrodes

Acetogenes have demonstrated the ability to produce acetate directly from electrons with high coulombic efficiency

Programs focus on white spaces in biofuel production

Developing Dedicated Biofuel Crops

Yield: 160 GJ/Ha-year (2x corn) Cost: < \$3 GGE

PE

Plants being developed under PETRO

DONALD DANFORTH PLANT SCIENCE CENTER

(Camelina)

(tobacco→Giant cane)

PE

Pine trees engineered to produce fuel molecules in addition to providing pulp for paper

Increase production, fuel quality & storage capacity for pine terpenes

Higher yield Camelina with improved energy & CO₂ capture

Higher light capturing efficiency Algae traits for improved fixation Higher yields of seed oils

Sorghum engineered to produce fuel

Sweet Sorghum

arp

@Allylix

Sorghum Oberholtzer's

(11b. Soz.) (st. Wt. 21cz.) (505 Grams)

...engineered...

X

Future FOAs

- How else can biology be used to transform the energy landscape?
- Just closed a round of "intent" for an open solicitation
- RFI open for scaling electro/chemolithoautotrophic biofuels