The Role of Bifunctional Catalysts on the Upgrading of Biomass Pyrolysis Oil Vapors

EPSCoR BIOFUELS RESEARCH TELECONFERENCE 2/15/12

Steven Crossley

The UNIVERSITY of OKLAHOMA

- gas phase
- low pressure
- remove oxygen
- preserve C on ring
- minimize hydrogen consumption

Guaiacol

Amorphous Silica-Alumina

Catalyst= Amorphous Silica-Alumina

Reaction conditions: T= 300°C, P = 1 atm, mol H_2 /mol feed = 60, W/F=1.2 hr

Anisole vs. Guaiacol

Catalyst= Amorphous Silica-Alumina

Reaction conditions: T= 300°C, P = 1 atm, mol H_2 /mol feed = 60, W/F=1.2 hr

Catalyst= 5 wt% Ru/C

Reaction conditions: T= 400°C, P = 1 atm, mol H_2 /mol feed = 60, W/F=1.2 hr

Issues with metal catalyst

- Loss of methyl groups
- Deactivation

Catalyst= **5%** Ru/TiO₂ Reaction conditions: T= 400°C, P = 1 atm, mol H₂/mol feed = 60, W/F=1.2 hr

Conservation of methyl groups

Conservation of methyl groups

Summary

- Adsorption/Deactivation over ASA
 - Guaiacol>Anisole
- Importance of methyl transfer for C retention
- Ru/TiO₂ systems show promise in terms of activity, selectivity, and stability
- Pretreatment conditions strongly influence catalytic activity and selectivity

Thank You

- Sunya Boonyasuwat
- Taiwo Omotoso

- Daniel Resasco
- Richard Mallinson
- Lance Lobban
- Friederike Jentoft
- Rolf Jentoft

