
Perceptions of Academic and Government Expert Groups in Watershed Management: A Case of the Cimarron River Watershed

Gehendra Kharel & Chris Zou Department of Natural Resource Ecology and Management Oklahoma State University

Oklahoma NSF EPSCoR 2018 Annual State Conference April 24, 2018

This material is based on work supported by the National Science Foundation under Grant No. OIA-1301789

- 1950-2011: 6,000 km² cropland lost to grass, range and urban areas
- Since 1999: grassland encroached by woody plants (red cedar)
 - Reduced streamflow (Zou et al. 2015)

- Cimarron River Watershed Symposium
 - November 17, 2016
 - 33 individuals (state, federal agencies/organizations and university researchers)
- Objective(s)
 - To discuss ongoing research and extension outreach efforts in the watershed
 - To establish Strengths Weaknesses Opportunities and Threats framework in the management of watershed

Representation from 12 different institutions and organizations

- U.S. Geological Survey
- Oklahoma Water Resources Board
- Oklahoma Cooperative Fish and Wildlife Research Unit
- Oklahoma Conservation Commission
- Burns & McDonnell
- Oklahoma Department of Wildlife Conservation
- Cushing Economic Development Foundation
- U.S. Fish and Wildlife Service
- Oklahoma Corporation Commission
- Natural Resources Conservation Service
- Oklahoma State University
- University of Oklahoma

33 Representatives

Cimarron River Watershed Symposium

- What we did?
 - Performed Strengths, Weaknesses, Opportunities and Threats (SWOT) Analysis
 - Individuals identified factors in each SWOT categories
 - Conducted online survey
 - Round 1: pairwise comparison between the identified factors in each SWOT category
 - Round 2: pairwise comparison of highly ranked factors in each SWOT category (from Round 1)
 - Extended SWOT with Analytical Hierarchical Process (AHP)
 - Assigning relative priority value to each SWOT factor
 - Determine overall judgement consistency

Analytic Hierarchy Process (AHP)

- Introduced by Thomas Saaty (1980)
 - A decision making tool for decision makers: set priorities between criteria (options)
 - Make a series of pairwise comparison between the alternatives (factors)
 - Captures both subjective and objective aspects of a decision
 - A technique for checking the consistency of the comparisons/evaluations
 - Reduces biases in the decision making process
 - It generates weight for each evaluation criterion/option based on the decision maker's pairwise comparison of the criteria/options
 - Higher the weight (score), the more important the corresponding criterion (option)
 - It combines the criteria weights and the options scores to determine a global score for each option

Analytic Hierarchy Process (AHP)

- Checking Consistency
 - A consistency ratio (CR) = CI / RI
 - RI is a random consistency index obtained from randomly generated reciprocal matrix using the scale 1/9, 1/8,1,8,9
 - CI is consistency index
 - CR < 10% is considered acceptable
 - CR = 0 % is the consistent judgement

Results:

SWOT factors obtained from the Cimarron River Symposium participants

Strengths	Weaknesses
S1: Willingness to work together	W1: No platform to share data
S2: Amount of historical data	W2: Social perception is unknown
S3: Informing policy based on science	W3: Inability to track water use
S4: Stream & biological monitoring activities	W4: Underutilization of data
Opportunities	Threats
O1: Incentives for water & wetlands conservation	T1: Uncertainty with regulations and policies
O2: Enforcement of water uses	T2: Increased water use for energy and irrigation
O3: Stronger stakeholder collaborations	T3: Lower funding priority
O4: Data use in decision support system	T4: Climate change/drought

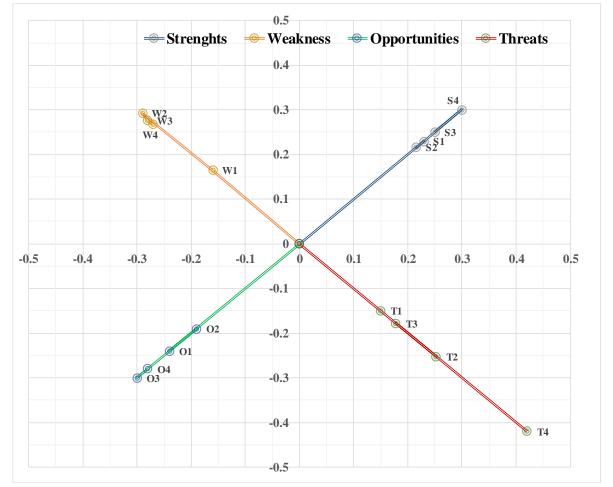
Issues identified: streamflow (quantity), woody plant (eastern redcedar) encroachment, drought, oil and gas, lack of conservation efforts (wetlands and wildlife), increased water use by permit holders, sedimentation, salinity

Results:

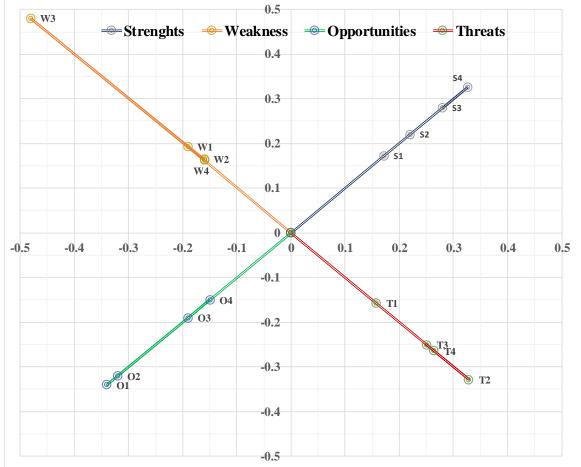
Consistency of responses between the stakeholders

Survey	SWOT factors	Government	Academia
Ι.	Strengths	4.1	2.2
	Weaknesses	0.5	9.6
	Opportunities	1.0	5.0
	Threats	2.0	0.0
II.	Ranking of highly ranked factors from Survey I*	1.5	0.6

* In Survey II, the participants were asked to make a pairwise comparison of the SWOT factors that were ranked the highest in Survey I.


Survey Results- SWOT-AHP *Kharel et al.* submitted to Environmental Management

SWOT categories	Factor priority score		Global priority score	
	Government	Academia	Government	Academia
Strengths			0.252	0.223
S1. Willingness to work together	0.172	0.229	0.043	0.051
S2. Amount of historical data	0.220	0.216	0.056	0.048
S3. Informing policy based on science	0.282	0.254	0.071	0.057
S4. Stream & Biological Monitoring	0.326	0.301	0.082	0.067
Weaknesses			0.363	0.167
W1. No platform to share data	0.193	0.165	0.070	0.027
W2. Social perception is unknown	0.165	0.292	0.060	0.049
W3. Inability to track water use	0.479	0.276	0.174	0.046
W4. Underutilization of data	0.163	0.268	0.059	0.045
Opportunities			0.166	0.225
O1. Incentives for conservation	0.337	0.235	0.056	0.053
O2. Enforcement of water uses	0.319	0.185	0.053	0.042
O3. Stronger stakeholder collaborations	0.192	0.302	0.032	0.068
O4. Data use in decision support system	0.152	0.277	0.025	0.062
Threats			0.219	0.385
T1. Uncertainty with regulations and policies	0.157	0.150	0.034	0.058
T2. Water use for energy and irrigation	0.328	0.252	0.072	0.097
T3. Lower funding priority	0.250	0.178	0.055	0.069
T4. Climate change/drought	0.264	0.420	0.058	0.162


Results:

Kharel et al. submitted to Environmental Management

Academia

Government

Cimarron River Watershed Symposium

Key findings:

- Respondents recognized **higher water management challenges** as compared to the available strengths and opportunities
 - Need of decision support systems/tools utilizing the available data
 - Need of social perception data
 - Preparedness for climate change/drought future conditions

Cimarron River Watershed Symposium

Leveraging the results

- Develop management scenarios focusing on identified and prioritized SWOT factors
 - E.g., water needs for irrigation, and oil and gas extraction
 - E.g., enforcement of water use; redcedar control
- Feed management scenarios into the integrated modeling platform- Envision

Perceptions of Academic and Government Expert Groups in Watershed Management: A Case of the Cimarron River Watershed

Gehendra Kharel & Chris Zou Department of Natural Resource Ecology and Management Oklahoma State University

Oklahoma NSF EPSCoR 2018 Annual State Conference April 24, 2018

This material is based on work supported by the National Science Foundation under Grant No. OIA-1301789

