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Abstract Agricultural drought, a common phenomenon in
most parts of the world, is one of the most challenging natural
hazards to monitor effectively. Land surface water index
(LSWI), calculated as a normalized ratio between near infrared
(NIR) and short-wave infrared (SWIR), is sensitive to vegeta-
tion and soil water content. This study examined the potential
of a LSWI-based, drought-monitoring algorithm to assess
summer drought over 113 Oklahoma Mesonet stations com-
prising various land cover and soil types in Oklahoma.
Drought duration in a year was determined by the number of
days with LSWI <0 (DNLSWI) during summermonths (June–
August). Summer rainfall anomalies and LSWI anomalies
followed a similar seasonal dynamics and showed strong cor-
relations (r2 = 0.62–0.73) during drought years (2001, 2006,
2011, and 2012). The DNLSWI tracked the east-west gradient
of summer rainfall in Oklahoma. Drought intensity increased
with increasing duration of DNLSWI, and the intensity in-
creased rapidly when DNLSWI was more than 48 days. The
comparison between LSWI and the US Drought Monitor

(USDM) showed a strong linear negative relationship; i.e.,
higher drought intensity tends to have lower LSWI values
and vice versa. However, the agreement between LSWI-
based algorithm and USDM indicators varied substantially
from 32 % (D2 class, moderate drought) to 77 % (0 and D0

class, no drought) for different drought intensity classes and
varied from ∼30 % (western Oklahoma) to >80 % (eastern
Oklahoma) across regions. Our results illustrated that drought
intensity thresholds can be established by counting DNLSWI
(in days) and used as a simple complementary tool in several
drought applications for semi-arid and semi-humid regions of
Oklahoma. However, larger discrepancies between USDM
and the LSWI-based algorithm in arid regions of western
Oklahoma suggest the requirement of further adjustment in
the algorithm for its application in arid regions.

Keywords Drought duration . Drought intensity . Land
surface water index . Summer drought

Introduction

Drought is a recurrent and inevitable threat in several parts of
the world (Hulse and Escott 1986; Shahid and Behrawan
2008; Sönmez et al. 2005). Southern Great Plains of the
USA experience drought on varying spatial and temporal
scales (Basara et al. 2013; Christian et al. 2015). Drought is
also among the most difficult of all natural hazards to monitor
effectively.

Yet, the repeated occurrence of drought events has
highlighted the need to develop effective drought-
monitoring tools to assess the impacts of this phenomenon.
Research to retrieve leaf water content from the reflectance
acquired from satellite sensors has progressed for more than
three decades. Tucker 1980 first suggested that the 1550–
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1750-nm spectral intervals were the best-suited band in the
700–2500-nm region for monitoring plant canopywater status
from space. A number of broadband ratio and combination
techniques using Thematic Mapper (TM) channel 4 (760–
900 nm, near infrared) and TM channel 5 (1550–1750 nm,
shortwave infrared) were proposed for remote sensing of plant
water status (Hunt et al. 1987; Jackson et al. 1983). The com-
bination of the near infrared (NIR) and short-wave infrared
(SWIR) bands has the potential of retrieving vegetation cano-
py water content (Ceccato et al. 2001, 2002; Maki et al. 2004).
The water-related vegetation index computed from the com-
bination of NIR and SWIR has different nomenclatures by
different authors. Gao 1996 and Chen et al. 2005 referred it
the normalized difference water index (NDWI). Kimes et al.
1981 used the term normalized difference infrared index
(NDII). Similarly, Jurgens 1997 and Xiao et al. 2002a, b called
the same combination of NIR and SWIR bands as the land
surface water index (LSWI). Despite known by different
names, the features they have in common is that the NIR
spectral region serves as a moisture reference band and the
SWIR spectral domain is used as the moisture-measuring
band. The water-related vegetation index is a measurement
of liquid water in vegetation canopies and hence is sensitive
to the total amount of liquid water contained in vegetation
when the vegetation cover is high. Some recent studies
(Bajgain et al. 2015; Chandrasekara et al. 2011; Wagle et al.
2014) have identified LSWI as an index in extracting the
vegetation water status and in drought detection.

Because agricultural drought occurs due to lack of soil
moisture and the consequent water stress in the vegetation, a
water-based index should also be used along with the
greenness-related indices such as normalized difference veg-
etative index (NDVI) and enhanced vegetative index (EVI) to
develop systematic and effective method of agriculture
drought assessment (Bajgain et al. 2015; Chandrasekara
et al. 2011; Tian et al. 2013; Wagle et al. 2014). The
Moderate Resolution Imaging Spectrometer (MODIS) sensor
on board the NASATerra satellite platform provides continu-
ous daily observations of the land surface. Our hypothesis is
that the water-related vegetation index LSWI computed from
time series MODIS images offers a new and improved capac-
ity for drought monitoring. In this study, we evaluated the
hypothesis over 113 Mesonet sites across Oklahoma under
different land cover and soil types. Also, the drought intensity
class classified based on LSWI values corresponding to US
Drought Monitor (USDM) drought intensity classes are fur-
ther linked to the duration of LSWI <0 (DNLSWI) to establish
a certain threshold of DNLSWI (in days) to define drought
intensity classes. Therefore, results from this study will help in
improving the capability of remote sensing vegetation drought
monitoring by establishing LSWI as a complimentary tool to
existing NDVI-based drought products. Specifically, we ad-
dressed the following research questions:

1) Is LSWI anomaly able to capture the drought events
across multiple sites over years?

2) Is LSWI-based drought-monitoring algorithm developed
for two tallgrass prairie sites (Bajgain et al. 2015) appli-
cable to quantify drought intensity over 113Mesonet sites
comprising various land cover and soil types in
Oklahoma?

3) What is the relationship between the DNLSWI and
drought intensity classified by USDM?

Materials and methods

Data

Oklahoma Mesonet stations and rainfall data

An extensive environmental observation network is well
established and distributed over Oklahoma, known as the
Oklahoma Mesonet (Brock et al. 1995). The Oklahoma
Mesonet is a network of 120 automated stations with at least
1 in each 77 counties of Oklahoma. The Mesonet provides
quality-controlled measurements of meteorological and land-
surface variables such as precipitation, temperature, and soil
moisture at intervals spanning 5–30 min depending on the
variables (http://www.Mesonet.org/).

In this study, we used 113 Mesonet stations that have con-
tinuous measurements of meteorological parameters from
2000 to 2013. Retired and replaced Mesonet stations were
not considered because site replacements were on different
MODIS pixels. The locations of the selected sites are present-
ed in Fig. 1; biophysical features are presented in Table S1. In
this study, we used the precipitation and soil water content
(SWC) data for three summer months (June–August) and cal-
culated the rainfall and SWC anomalies from the 14-year
mean (2000–2013). Additionally, the anomalies in rainfall
calculated from 30-year rainfall data (climatological normal)
from Cooperative Observer Program (COOP, National
Weather Service) sites were compared with the rainfall anom-
alies computed from a 14-year data from Mesonet stations,
two from each climate division of Oklahoma.

MODIS surface reflectance and vegetation index data

The MODIS is an instrument on board the NASA’s Terra
(EOS am) and Aqua (EOS pm) spacecraft. This sensor pro-
vides simultaneous observations of the atmosphere, terrestrial
surface, and oceans. The MODIS instrument has a temporal
resolution of 1 to 2 days with high radiometric resolution
images (12 bit). It collects data for 36 spectral bands, and
the following 7 of these bands are designated mainly for land
surface and vegetation studies: blue (459–479 nm), green
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(545–565 nm), red (620–670 nm), near infrared (nir1 841–
875 nm and nir2 1230–1250 nm), and shortwave infrared
(swir1 1628–1652 nm and swir2 2105–2155 nm; Lillesand
et al. 2014).

The 8-day MODIS land surface reflectance product
(MOD09A1) at a 500-m spatial resolution was used in
this study. The MOD09A1 time series datasets for indi-
vidual Mesonet sites were downloaded from the data
portal managed by the Earth Observat ion and
Modeling Facility at the University of Oklahoma
(http://eomf.ou.edu/visualization). The geographic
locations of the Mesonet sites were used to retrieve
MODIS data at pixel level. For each MODIS 8-day
composite, surface reflectance (ρ) values for visible,
NIR, and SWIR bands were used to calculate NDVI,
EVI, and LSWI as

NDVI ¼ ρ NIR1−ρred
ρ NIR1þ ρred

ð1Þ

EVI ¼ ρ NIR1−ρred
ρ NIR1þ 6� ρred−7:5 ρblueþ 1

ð2Þ

LSWI ¼ ρ NIR1−ρSWIR1

ρ NIR1þ ρSWIR1
ð3Þ

USDM data

The USDM map is a weekly drought product developed by
a partnership of various agencies including National

Oceanic and Atmospheric Administration (NOAA), the
US Department of Agriculture (USDA), and the National
Drought Mitigation Center (NDMC) (http://www.drought.
unl.edu/MonitoringTools/USDroughtMonitor.aspx). The
USDM includes a weekly national map displaying
dryness divided into five categories, or levels of
intensities, from D0 to D4, based on a percentile ranking
of numerous indicators or indices (Svoboda et al. 2002).
The D levels are based on a blend of different indices in-
cluding the Palmer drought index, CPC soil moisture mod-
el, US Geological Survey (USGS) weekly streamflow, stan-
dardized precipitation index (SPI), and satellite vegetation
health index (Kogan 2002; Kogan et al. 2004). TheD levels
are labeled by drought intensity or severity, with D1 being
the least intense and D4 the most intense. The D0 classifi-
cation or drought watch areas are abnormally dry and may
be heading into drought or recovering from drought, but
conditions have not yet returned to normal (Svoboda et al.
2002). The USDM archived weekly maps are available at
http://droughtmonitor.unl.edu/archive.html.

For this study, weekly USDM drought maps for
June–August (2000 to 2013) were provided by the
NDMC in shapefile format and then rasterized to the
10-km ALEXI CONUS grid. Numerical values were
assigned to each drought category, with no drought con-
ditions set to 0, abnormally dry conditions (D0) to 1,
moderate drought (D1) to 2, severe drought (D2) to 3,
extreme drought (D3) to 4, and exceptional drought (D4)
to 5.

Fig. 1 The location and distribution of the Mesonet sites (113 Mesonet stations) in Oklahoma, USA
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Methods

LSWI-based agricultural drought-monitoring algorithm

The LSWI-based algorithm uses LSWI as an indicator to as-
sess agricultural drought in tallgrass prairie (Bajgain et al.
2015). Generally, green vegetation has positive LSWI values
(>0) and dry vegetation has negative LSWI values (<0).
Therefore, LSWI <0 during growing season indicates drought
in tallgrass prairie in Oklahoma (Bajgain et al. 2015; Wagle
et al. 2014). The duration of LSWI <0 (DNLSWI) during the
summer months (June–August) was used to estimate the
drought duration and drought intensity. To illustrate the algo-
rithm at single site, the dynamics of rainfall and LSWI in
drought (2006) and pluvial year (2007) at Marena Mesonet
station is presented in Fig. 2. The LSWI was greater than zero
throughout the growing season in 2007 when ecosystem re-
ceived well-distributed rainfall, while the LSWI was less than
zero for substantial number of days in 2006 due to rainfall
associated with drought (Dong et al. 2011). Therefore, we
used DNLSWI during the summer months (June–August) to
reflect the duration (length) of drought period as an algorithm
to assess summer drought of the ecosystem.

Anomaly analysis of summer rainfall and LSWI

Mean LSWI was computed for the summer months, and
anomalies were determined for each station during drought
years (2001, 2006, 2011, and 2012) from the 14-year mean
(2000–2013). Similarly, summer rainfall anomalies were com-
puted for each station during drought years based on the 14-
year mean. The similarity between the LSWI anomaly and
summer rainfall anomaly for each station was determined by

evaluating the correlation between them. This method identi-
fied the stations where LSWI anomalies followed the trends of
summer rainfall anomalies, thus providing a direct method to
assess ecosystem drought.

Results

Characteristics of summer rainfall over 113 Mesonet sites
and identification of drought years based on summer
rainfall

Figure 3a shows the box plots of the total summer rainfall that
occurred in each year over the 113 Mesonet sites. The disper-
sion in the rainfall among the 113 stations is compared for
each year, and the line in the box represents the median sum-
mer rainfall amount, which is equivalent to the 50th percentile
of observations (113 stations). The median summer rainfall
was highest (455 mm) in 2007, while the years including
2001, 2006, 2011, and 2012 had relatively low median rain-
fall. For example, 50 % of the observations were below
111 mm of summer rainfall in 2011, indicating dry conditions
at more than half of the Mesonet stations and was consistent
with significant drought during the period (Hoerling et al.
2013; Tadesse et al. 2015).

The analysis of summer drought for each year (2000–2013)
was computed by calculating the average summer rainfall
from the14-year average. Precipitation values representing
50 and 25 % of the long-term average rainfall were calculated
for each station. These values were then deducted from the
long-term average at every station to obtain values of 25 and
50 % precipitation. If the annual rainfall was between 25 and
50 % deficiency, then it was classified as moderate drought. If
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Fig. 2 Seasonal dynamics and
interannual variations of daily
rainfall and land surface water
index (LSWI) in drought (2006)
and pluvial (2007) years at
Marena, Oklahoma
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the annual rainfall was less than the value of 50 % deficiency,
then it was classified as severe drought. For example, at the
Acme Mesonet station:

Average summer rainfall 1981−–2010ð Þ ¼ 260 mm :
5050%of average summer rainfall ¼ 50%of 260 ¼ 130 mm:
25%of average summer rainfall ¼ 25%of 260 ¼ 65 mm :
50 % deficiency ¼ 260 – − 130 ¼ 130 mm :
25 % deficiency ¼ 260 – – 65 ¼ 195 mm :
Summer rainfall during 2011 ¼ 83 mm :

Thus, the summer rainfall at Acme in 2011 was less than
the calculated 50 % deficiency and was subsequently classi-
fied as severe drought.

Based on annual rainfall deficiency, the majority of the
stations received less than normal amounts of rainfall in
2001, 2006, 2011, and 2012, whereas stations received normal
to above normal rainfall in 2004, 2007, 2008, and 2013
(Fig. 3b). For example, in 2011, drought occurred at nearly
all stations, whereby 70 % of stations included at least the
moderate drought classification with 29 % of those classified
as severe.

A frequency distribution was completed for drought pe-
riods when compared with the total period by computing total
summer rainfall (June–August) for 1582 site-years (14 years ×
113 sites) of total data. The results displayed in Fig. 3c dem-
onstrate that drought site years have a significant right skew in

distribution, whereby the summer rainfall ranged from 50 to
350 mm with the greatest number falling within 150-mm bin.
Conversely, the frequency distribution for all years (drought
plus normal) ranged from 50 to 500 mm with the highest
number falling within the 250-mm bin.

Figure 3d shows the anomalies in summer rainfall calcu-
lated from a 30-year rainfall data (climatological normal) from
COOP sites compared with the rainfall anomalies computed
from a 14-year data from Mesonet stations, two from each
climate divisions of Oklahoma. The correlation analysis
showed a strong relationship (r2 = 0.91) between the anoma-
lies of rainfall obtained from two data sources, suggesting that
drought years (2001, 2006, 2011, and 2012) identified in our
analysis can represent the climatic extremes of Oklahoma in
the last decade based on climatological normal perspective.

The relationship between rainfall anomaly and LSWI
anomaly

Once the drought years were selected, the relationship
between summer rainfall anomalies and LSWI anomalies
was investigated. Figure 4 displays the LSWI anomalies
and summer rainfall anomalies for individual pixels over
the 113 Mesonet stations during drought years (2001,
2006, 2011, and 2012). Overall, the anomalous summer
rainfall results in anomalous LSWI at most Mesonet
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stations during drought years. As such, the anomalies in
summer rainfall and LSWI revealed a strong relationship
between rainfall and vegetation water content. For exam-
ple, pixel-based correlation analyses between summer
rainfall anomalies and LSWI anomalies are presented in
Fig. 4 (inset graphs). For all identified drought years,
strong relationships (r2 = 0.61–0.67) between anomalies
of summer rainfall and anomalies of LSWI were identi-
fied. Although the magnitudes of the anomalies of sum-
mer rainfall and LSWI varied from year to year, the
relationship between two parameters was consistently
strong.

The relationship between SWC anomaly and vegetation
indices anomaly

Figure 5 presents the Pearson’s correlation coefficients
(r) between SWC anomalies and three vegetation anom-
alies (NDVI, EVI, and LSWI). As expected, a better
relationship (rLSWI = 0.52) of SWC anomalies was ob-
served with LSWI anomalies than NDVI anomalies
(rNDVI = 0.40) and EVI anomalies (rEVI = 0.44). We
examined the correlation coefficients (rLSWI, rEVI, and
rNDVI) for all 113 Mesonet stations. Figure 6 compares
the r values derived for NDVI, EVI, and LSWI anoma-
lies with SWC anomalies. The analysis showed the sig-
nificant difference between rLSWI and rNDVI and rLSWI

and rEVI with p values less than 0.0001. As a whole,
there are significant r values that fall above the 1:1 line
towards the rLSWI. The rLSWI was 25 and 20 % higher
than rNDVI and rEVI, respectively, suggesting LSWI as a

better indicator of soil water content as compared to
NDVI and EVI.

The relationship between LSWI-based drought duration
and summer rainfall

Figure 7 shows the scatter plot of DNLSWI versus total sum-
mer rainfall across 113 Mesonet stations binned into 50-mm
classes. The result highlights that LSWI was highly sensitive
to summer rainfall and the DNLSWI rapidly decreased as the
amount of rainfall increased. Specifically, the DNLSWI was
more than 50 days when summer rainfall was less than
150 mm, indicating water stress (LSWI <0) during active
growing period of the vegetation. Conversely, the DNLSWI
was less than 2 weeks when summer rainfall was greater than
400 mm.

The longitudinal gradient of summer rainfall is a widely
recognized pattern in Oklahoma, where the amount of rain-
fall decreases from east (mean summer rainfall ∼300 mm)
to west (mean summer rainfall ∼150 mm; Fig. 8a). To un-
derstand the occurrence of drought across the rainfall gra-
dient of Oklahoma, we counted total DNLSWI during
summer months (June–August) from 2000 to 2013 for all
Oklahoma Mesonet stations. As expected, a distinct in-
creasing pattern of total number of DNLSWI was observed
across east-west gradient of Oklahoma (Fig. 8b), which
was opposite to the rainfall pattern. The sites towards the
east with greater amount of average summer rainfall had
the least DNLSWI, whereas a general increment of
DNLSWI was observed with lesser precipitation as we
moved from east to west.
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Characteristics of DNLSWI and USDM drought history
(2000–2013)

The pattern associated with DNLSWI for 113 Mesonet sta-
tions during the study period (2000–2013) is presented as box
plots in Fig. 9a. These plots revealed the distribution of
DNLSWI among the Mesonet sites within a year and among
years. The median DNLSWI was relatively greater during the
drought years (2000=32days, 2006=48days, 2011=56days,
and 2012 = 56 days) than non-drought years. The distribution
as well as the median DNLSWI was the lowest in 2007, which
was a pluvial year and the wettest summer on record in central

Oklahoma (Arndt et al. 2009; Christian et al. 2015; Dong et al.
2011). Figure 9b shows the frequency distribution of the
Mesonet stations (113 stations over 14 years) with associated
DNLSWI (113 stations over 3 months) for the total study
period and drought years separately. The count was highest
for DNLSWI equal to 8 days because it is very common that
majority of the stations could have LSWI below zero for
8 days over limited period during seasonal drying. However,
the ratio of drought years to all years increased as the
DNLSWI increased, suggesting that drought years contribut-
ed larger counts for the higher DNLSWI (Fig. 9c). For exam-
ple, ratio of 0.13 for DNLSWI equal to 8 days means only
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13% of the total counts were contributed by the drought years,
while for DNLSWI equal to 64 days, drought years contrib-
uted 63 % of the total counts, suggesting higher DNLSWI
during the drought years.

Figure 10 shows the weekly percentage of Oklahoma
Mesonet sites affected by D0 to D4 drought from 2000 to
2013. The drought periods spanning 2006, 2011, and 2012
were evident and reached D4 status for extended periods.
The plot also depicts the pluvial condition during 2007 when
D0 drought occurred in a very limited temporal window.
However, significant areas, especially sites in western
Oklahoma where drought conditions persisted even though
majority of the state yielded above normal precipitation,
showed higher-intensity summer drought in 2013, which

was also considered as an overall pluvial year based on total
year rainfall.

The relationship between LSWI-based drought severity
and USDM drought intensity categories

The LSWI values corresponding to its NDVI values for each
week based on USDM weekly map are plotted in Fig. 11.
Results showed that larger negative values of LSWI
corresponded to higher drought intensity categories identified
byUSDM classes (i.e.,D3 andD4—extreme and exceptional),
while no drought and abnormally dry categories (0 and D0)
corresponded to the larger positive LSWI values. Further,
moderate to severe drought categories (D1 and D2)
corresponded to intermediate LSWI values. Based on this
LSWI-NDVI two-dimensional scatter plot, we identified the
range of LSWI values for each drought categories used by
USDM in Bajgain et al. 2015. Due to the large number of site
years and mixture of land cover types, the groupings of
drought intensity could not be visualized effectively within
the range formulated on observations at two tallgrass prairie
sites. However, the general pattern that higher drought inten-
sity tends to have lower LSWI values and vice versa was
observed for all land cover types as well as grasslands and
croplands. Compared to all land cover types and croplands,
grasslands showed better relationships to the drought intensity
categories.

To determine the agreement between LSWI-based drought
intensity classification based on the LSWI value range and
USDM drought categories (Table 1), we computed the per-
centage of pixels that fall within the defined LSWI value range
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for the particular drought class. The assessment was per-
formed for different land cover types (all land covers,
grasslands, and croplands; Fig. 12a). Overall, the agreement
was higher (>60 %) for low-intensity (0 and D0) and high-
intensity (D3 andD4) droughts (the two ends of drought class),
but the intermediate drought intensity (D1 and D2) had rela-
tively low agreement. However, the relationship was slightly
improvedwhen computed for individual land cover types with
grasslands showing the best agreement. Furthermore, we an-
alyzed the agreement of the LSWI-based drought classifica-
tion for nine climate divisions of Oklahoma to further analyze
the spatial variability of drought tracking by the LSWI-based
algorithm (Fig. 12b). The LSWI identification showed better
agreement (>80 %) with USDM 0 and D0 (no dry and

abnormally dry) classes in the eastern humid areas, whereas
the agreement was low (<30 %) for the same drought classes
in the western arid areas (panhandle). However, the western
region identified as severe to exceptional drought (D3 and D4)
by USDMmatched very well with the new LSWI-based clas-
sification. For example, 91 % of the pixels were classified as
severe and exceptional droughts in the panhandle region,
whereas USDM also identified the same drought intensity.
However, only 19 % of the low-intensity drought pixels
matched well with the lower-intensity drought classification
of USDM.

The relationship between USDM drought intensity,
DNLSWI, and average LSWI value is presented in Fig. 13.
The general observation was that drought intensity increased
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as DNLSWI became longer. For short DNLSWI periods (0–
24 days), the drought impact was sharp and then plateaued
between 24 and 48 days. As DNLSWI became larger
(>48 days), the addition of each new day resulted into larger
drought impacts identified as a higher drought intensity class
by the USDM (Fig. 13). This relationship was further support-
ed by the average LSWI values which declined as DNLSWI
increased. The decreasing pattern of average LSWI was also
persistent for the shorter DNLSWI but declined sharply as the
DNLSWI was longer than 50–60 days.

Discussion

The correlation analyses between summer rainfall anomalies
and LSWI anomalies in drought years revealed sensitivity of
LSWI to summer rainfall variability in Oklahoma. Higher
negative anomalies in summer rainfall resulted in larger de-
cline in LSWI values, an indication of drought-impacted veg-
etation (Bajgain et al. 2015; Wagle et al. 2014). Regardless of
different land cover and soil types across 113 Oklahoma
Mesonet sites, LSWI tracked droughts in majority of the study
sites. However, it over-classified the low-intensity droughts in
arid western regions of Oklahoma. Given the anticipated fu-
ture increase in precipitation variability (Liu et al. 2012;
Zhang and Nearing 2005), ecosystems in this region are ex-
pected to be particularly susceptible to droughts resulting large
losses for food and livestock industries. Our results suggested
that the ability of LSWI to track the summer rainfall anomalies
could be one of the important features to assess and track
agricultural droughts. Our finding on the performance of
LSWI to track water content of the ecosystem was consistent
with the results by Chandrasekara et al. 2011, which demon-
strated LSWI as a potential indicator of increasing water con-
tent in the ecosystem following the onset of monsoon in India.
Since commonly used NDVI and EVI are not always good
indicators of vegetation conditions especially during adverse
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Table 1 A summary of the USDM drought intensity classes and the
LSWI-based classes

USDM drought intensity class Description LSWI D values

0 non-drought LSWI > 0.1

D0 abnormally dry LSWI > 0.1

D1 drought-moderate 0 < LSWI ≤ 0.1

D2 drought-severe −0.1 < LSWI ≤ 0

D3 drought-extreme LSWI ≤ −0.1
D4 drought-exceptional LSWI ≤ −0.1

Source: Bajgain et al. (2015)
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climatic conditions for vegetation growth (Gamon et al. 1995;
Gamon et al. 1993), LSWI can better track the drought-
impacted vegetation because of its higher sensitivity to
drought (Bajgain et al. 2015; Chandrasekara et al. 2011;

Tian et al. 2013; Wagle et al. 2014). The opposite longitudinal
patterns of DNLSWI and summer rainfall suggested that
counting the DNLSWI (in days) has the ability in tracking
the drought across various Mesonet sites of Oklahoma. The
results illustrate that LSWI can be used as an effective tool to
monitor dryness persisted in the diverse (land cover and soil
types) ecosystems in semi-arid and semi-humid regions in
eastern and central Oklahoma. However, the spatial variability
of drought tracking ability was observed based on drought
intensity. In eastern humid regions of Oklahoma, both
USDM-D and LSWI-D showed no drought (0 drought class)
when average summer rainfall was above 250–300 mm
(Table 2). However, in western dry region of Oklahoma,
USDM- and LSWI-based drought categories were different.
For example, above 150 mm of summer rainfall was consid-
ered as no drought categories by USDM, but LSWI showed
severe drought category (D3) with 150–300 mm of summer
rainfall. The less agreement between our LSWI-based and
USDM drought categories for the low drought intensity cate-
gories is because of the fact that dry areas like panhandle
region of Oklahoma has higher negative LSWI values, and
consequently, the LSWI-based algorithm showed higher
drought severity. LSWI values are considered proxy of vege-
tation water content and are the physical values, whereas
USDM considered several factors including local reports of
drought conditions (such as reports from water managers and
residents) (Svoboda et al. 2002). This made USDM assess-
ment more locally adjusted despite of coarse spatial
resolution.

One of the main reasons behind attempting to establish the
relationship between summer rainfall and LSWI was to deter-
mine the hydrological status of the ecosystem. The total
amount of summer rainfall received by a particular ecosystem
in a particular year could be related to DNLSWI, which in turn
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can be inferred in terms of drought intensity. Although our
results showed a smooth decreasing trend of DNLSWI with
increasing summer rainfall, site-specific relationship could not
be established (Bajgain et al. 2015) because averaging multi-
ple data points produced a smoother overall trend. Thus, ad-
ditional experiments are needed to identify the threshold
values for each site with different soil and crop types in the
future. Rainfall expressed as a percentage departure from the
long-term average for a given period is widely used index for
drought monitoring, where monitoring other parameters such
as soil moisture or evapotranspiration are costly and difficult
(Nicholson 1989; Nicholson 2000).With this approach, where
total summer rainfall is inferred in terms of DNLSWI for
assessing drought is extremely valuable since LSWI is derived
from satellite sensors. Therefore, it is very important to apply
this information rendered from LSWI and summer rainfall
relationship while developing drought-monitoring network
for this region.

Knowledge of LSWI-based drought intensity could be crit-
ical for assessing drought with different parameters like
DNLSWI. Quantifying drought intensity in terms of LSWI
and defining a threshold for each USDM drought class will
be an important implication for a future drought-monitoring
program. For example, secretarial disaster area determination
and notification process depends on the USDM drought inten-
sity classification for designating any geographical unit as a
disaster area (USDA-FASA, 2015). The criteria used are the
area should be under either D3 or D2 (at least 8 consecutive
weeks) drought class. USDMdrought classification involves a
series of information for finding a threshold, comprised of
complex procedures as well as could have a limited spatial
precision because it relies on spatially interpolated climate
data input (Tadesse et al. 2015). Our results suggested that this
USDM drought intensity class can be linked with DNLSWI.
The intersection of intensity curve and LSWIavg curves in
Fig. 13 established a threshold point at which drought impacts
increased sharply as LSWIavg declined. This threshold value is
between the D2 and D3 drought intensity classes and can be

inferred in terms of DNLSWI, which is approximately 60–
62 days. Many agencies have used USDM drought intensity
class thresholds to guide measures in a variety of assistance
programs such as Livestock Forage Disaster Program (LFP),
Emergency Haying and Grazing, Livestock Indemnity
Program, Noninsured Crop Disaster Assistance Program
(NAP), and Crop Insurance Basics (Mallya et al. 2013;
Mizzell and Lakshmi 2003; Otkin et al. 2015). Such assistance
programs can alternatively input DNLSWI thresholds for sim-
ple and easy operations as well as for a better precision in
terms of spatial resolution (500 m). However, validation of
this approach of LSWI-based thresholds for such kind of ap-
plications remains a further research topic.

The MODIS-derived, LSWI-based drought assessment al-
gorithm is simple and has a higher spatial resolution (∼500).
However, the LSWI-based drought algorithm can have a lim-
itation when the reflectance from land surface is impacted by
cloud cover (Jensen 2009). An appropriate gap-filling algo-
rithm can create a continuous dataset, thereby reducing the
effect of unreliable observations, which is needed for making
the drought-monitoring algorithm robust. Another limitation
is the threshold values used in the algorithm. We used LSWI
<0 during the growing season as the indicator of agricultural
drought in tallgrass prairie based on calibration made on two
study sites (Bajgain et al. 2015). Although the algorithm
showed good agreement in most of the Mesonet sites, the
DNLSWI clearly over-classified D0 and D1 drought condi-
tions in the arid regions of Oklahoma. This is because these
regions receive less rainfall than the semi-arid to semi-humid
regions of eastern Oklahoma, where the algorithm was origi-
nally calibrated. This result suggests that it is necessary to
further refine the LSWI-based algorithm to better represent
drought severity in arid western regions of Oklahoma. One
of the possible adjustments could be the LSWI threshold
values for the arid region considering more negative magni-
tudes of the LSWI values in arid regions. This adjustment
could reduce the discrepancies observed between the LSWI
andUSDMdrought classification especially for lower drought

Table 2 USDM- and LSWI-
based drought classes in eastern
and western Oklahoma binned by
average summer rainfall of the
Mesonet stations located in the
areas

Summer rain (mm) Eastern OK Western OK

USDM D class LSWI D class USDM D class LSWI D class

50–100 3 2 5 5

100–150 2 2 4 5

150–200 2 3 1 3

200–250 0.5 0.5 0 3.5

250–300 0 0 0.2 3

300–350 0 0 0 1.5

350–400 0 0 0 0

400–450 0 0

450 above 0 0
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intensity resulted from the larger negative values of LSWI, a
common feature of arid region.

Conclusions

Results of LSWI analysis for the period of 2000–2013 for 113
Mesonet stations across Oklahoma revealed valuable informa-
tion within the context of drought tracking. A strong correla-
tion and dynamics between LSWI anomalies and summer
rainfall anomalies comprises a fact that LSWI is sensitive to
rainfall variations and can be used as an indicator of drought
occurrence in an ecosystem. It is then deduced that DNLSWI
had the close association with the vegetation condition under
rainfall variations. Pixel-based drought intensity classification
has been tested to validate the LSWI-based drought class for
different land cover and soil types. Despite a relatively lower
degree of agreement for the intermediate drought classes, the
LSWI-based drought intensity class was reliable for low- and
high-intensity classes defined by USDM. There was a longi-
tudinal sensitivity for low-intensity droughts between eastern
and western Oklahoma as shown by lower agreement of D0

and D1 drought with USDM in panhandle region (western
Oklahoma). The drought assessment at larger scale could be
made more effective by incorporating information and fea-
tures of LSWI such as DNLSWI from a site level to a regional
scale with further improvement for arid regions, where larger
negative LSWI values are common. The analogy of DNLSWI
to USDM drought intensity class could be made complement
in current drought-monitoring program and algorithms.
Results also demonstrated that by counting the number of
DNLSWI, drought intensity thresholds can be established
and used as a simple complementary tool in several
applications.
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