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A B S T R A C T   

Water availability in the subhumid region is highly vulnerable to frequent droughts. Water scarcity in this region 
has become a limiting factor for ecosystem health, human livelihood, and regional economic development. A 
notable pattern of land cover change in the subhumid region of the United States is the increasing forest area due 
to afforestation/reforestation and woody plant encroachment (WPE). Given the distinct hydrological processes 
and runoff generation between forests and grasslands, it is important to evaluate the impacts of forest expansion 
on water resources, especially under future climate conditions. In this study, we focused on a typical subhumid 
watershed in the United States – the Little River Watershed (LRW). Utilizing SWAT + simulations, we projected 
streamflow dynamics at the end of the 21st century in two climate scenarios (RCP45 and RCP85) and eleven 
forest expansion scenarios. In comparison to the period of 2000–2019, future climate change during 2080–2099 
will increase streamflow in the Little River by 5.1% in the RCP45 but reduce streamflow significantly by 30.1% in 
the RCP85. Additionally, our simulations revealed a linear decline in streamflow with increasing forest coverage. 
If all grasslands in LRW were converted into forests, it would lead to an additional 41% reduction in streamflow. 
Of significant concern is Lake Thunderbird, the primary reservoir supplying drinking water to the Oklahoma City 
metropolitan area. Our simulation showed that if all grasslands were replaced by forests, Lake Thunderbird 
during 2080–2099 would experience an average of 8.6 years in the RCP45 and 9.4 years in the RCP85 with water 
inflow amount lower than that during the extreme drought event in 2011/2012. These findings hold crucial 
implications for the formulation of policies related to afforestation/reforestation and WPE management in 
subhumid regions, which is essential to ensuring the sustainability of water resources.   

1. Introduction 

Climate change exerts profound impacts on the water cycle, signifi-
cantly affecting both natural ecosystems and human communities in the 
United States (Payton et al., 2023). Model projections for the end of the 
21st century indicated an anticipated decrease of 12–28% in river flow 
within the Arkansas River Basin in the central U.S. under future climate 
conditions (Yang et al., 2023). Given the importance of surface water for 
municipal water supply and agricultural use in the central U.S., it is 
imperative to assess the impacts of land cover changes and land man-
agement policies on streamflow under future climate conditions. A po-
tential type of land cover change in the central U.S. is the expansion of 
woody plant coverage due to juniper encroachment and forest planta-
tion (DeSantis et al., 2011; Zou et al., 2016). 

Recent estimates indicate that the Earth’s land ecosystems have the 
capacity to support another 0.9 billion hectares of forests, which is 
equivalent to over 200 Gt of carbon or 25% of the carbon storage in the 
atmosphere (Bastin et al., 2019). Afforestation and reforestation repre-
sent critical natural climate solutions to combat climate change and 
mitigate climate warming (Griscom et al., 2017; Robertson et al., 2022; 
Xu et al., 2023). According to the FAO The State of the World ‘s Forests 
(2022); FAO, 2022), global forest area is shrinking, with 420 million ha 
lost through deforestation during 1990–2020. Moreover, satellite-based 
study revealed a reduction in global forest area from 2000 to 2012, 
which experienced 230 M ha forest losses and 80 M ha gains (Hansen 
et al., 2013). These changes in forest coverage exert a profound influ-
ence on global climate conditions through a series of biophysical and 
biogeochemical processes (Alkama and Cescatti, 2016; Canadell and 
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Raupach, 2008; Cerasoli et al., 2021). Over the period of 2001–2019, 
global forest loss resulted in gross greenhouse gas (GHG) emissions of 
8.1 Gt CO2e yr− 1 (Harris et al., 2021). However, amidst these challenges, 
global forests continued to function as a substantial and persistent car-
bon sink (Pan et al., 2011) and sequestrated carbon from the atmosphere 
at a rate of 15.6 Gt CO2e yr− 1 in the first two decades of this century 
(Harris et al., 2021). 

Afforestation/reforestation efforts in the United States hold prom-
ising potential, capable of sequestrating 13–21 Tg of Carbon per year in 
the topsoil, accounting for 10% of the US forest carbon sink (Nave et al., 
2018). According to the spatial dataset of afforestation/reforestation 
opportunities developed by Griscom et al. (2017), the subhumid 
southcentral United States, especially the eastern part of the southern 
Great Plains (SGP) in Oklahoma, Texas, and Kansas, have a vast area for 
potential afforestation/reforestation (see Atlas of Forest Landscape 
Opportunities, https://www.wri.org/applications/maps/flr-atlas). This 
region corresponds significantly with the forest-grassland transition 
zone in the United States (Joshi et al., 2019; Starr et al., 2019). 

The forest-grassland transition zone in the subhumid United States 
encompasses several major metropolitan areas, such as Oklahoma City 
and Tulsa in Oklahoma, and Dallas-Fort Worth in Texas. Vegetation in 
this region is featured by a diverse mix of forests, savanna, and grass-
lands. Prominent tree species in this area include post oak (Quercus 
stellata), black hickory (Carya texana), and blackjack oak 
(Q. marilandica) (Karki and Hallgren, 2015). In the Cross Timbers 
ecoregion and the broader subhumid region in the United States, 
recurring droughts represent a significant natural disturbance (Ansley 
et al., 2023), imposing considerable impacts on the availability of sur-
face water resources (Livneh and Hoerling, 2016). The duration and 
intensity of drought is naturally variable, but both have been escalating 
in response to climate change. One early example of this is the prolonged 
water deficit and high temperature in the 1930s, which severely 
diminish water availability and contributed to the notorious “Dust 
Bowl” event (Schubert et al., 2004). At a sub-seasonal scale, flash 
droughts have been becoming more frequent over recent decades 
(Christian et al., 2019). During the 2011/2012 Great Plains drought, the 
water level of Lake Thunderbird (a major drinking water source for 
Midwest City, Del City, and Norman in the Oklahoma City metropolitan 
areas) dropped to 2.1 m below the recommended conservation pool, 
underscoring the profound impacts of drought on water supply in this 
region. Furthermore, Yang et al. (2023) reported that future drought 
events will be more frequent and severe, leading to a substantial 
reduction in river flow and water resources availability. Therefore, 
ensuring a sustainable supply of surface water in the subhumid region is 
not only imperative for preserving ecological integrity but also essential 
for human livelihood and regional economic development. 

Over the past few decades, the vegetation composition in the forest- 
grassland transition zone has undergone notable changes due to shifts in 
climate conditions and the suppression of fires (DeSantis et al., 2011). 
There has been a discernible trend of woody plant encroachment (WPE) 
into existing grasslands, as well as the replacement of deciduous forests 
by the evergreen species Juniperus virginiana (eastern redcedar, red-
cedar) (Briggs et al., 2005; Hoff et al., 2018). WPE in this region is 
occurring at a rate five to seven times faster than other ecoregions in the 
country (Archer et al., 2017; Barger et al., 2011; Wilcox et al., 2018). 
Eastern redcedar, which is a native species to eastern North America, is 
one of the major woody species encroaching into the native grasslands. 
Recent satellite observations indicate that an average of 40 km2 Okla-
homa grasslands have been transformed into woodlands each year over 
the past four decades (Wang et al., 2018a). Redcedar encroachment is 
expected to continue in the U.S. forest-grassland transition zone under 
future climate conditions (Yang et al., 2024). 

Land conversion from grasslands to woodlands and forests has sig-
nificant implications for hydrological processes by altering various as-
pects of the hydrological cycle, including evapotranspiration patterns 
(Huxman et al., 2005), soil moisture dynamics (Acharya et al., 2017; Zou 

et al., 2014), groundwater recharge (Acharya et al., 2018), and ulti-
mately streamflow (Qiao et al., 2017; Zou et al., 2016). A prevailing 
consensus is that the increase in woody plant coverage would lead to 
elevated rates of evapotranspiration but reduced river discharge (Kish-
awi et al., 2023). It is important to note that previous studies examining 
the impacts of increased woody plant coverage on hydrological pro-
cesses and river flow focused on the contemporary period without ac-
counting for the future shift in dryness with climate change (e.g. Qiao 
et al., 2017; Zou et al., 2016). Given that planted trees or encroaching 
woody species require decades to reach their mature stage, it becomes 
imperative to comprehend the effects of the expanding forest area on 
hydrological processes under future climate change scenarios in the 
subhumid area. It is noteworthy that the magnitude of future forest 
coverage is subject to significant uncertainties. Therefore, studies that 
provide estimates of water resource variations across a wide spectrum of 
forest expansion scenarios become imperative for the development of 
afforestation and land management policies to balance the increases in 
forest coverage and water resources availability. 

In this study, we selected a typical subhumid watershed in the forest- 
grassland transition zone, i.e., Little River watershed (LRW) in central 
Oklahoma, to investigate the changes in streamflow patterns in response 
to different levels of forest expansion and climate change. We utilized 
the SWAT+ (version: 6.5.6.64) to simulate streamflow in the LRW under 
two different climate change scenarios and eleven forest expansion 
scenarios. Aims of this study are to (1) evaluate the capacity of SWAT+
in simulating streamflow in the subhumid region and the impacts of 
forest expansion on the changes in river flow; (2) provide valuable sci-
entific insights and evidence for informing federal and state govern-
ments in designing afforestation/reforestation policies in the subhumid 
region; and (3) aid in the development of land management strategies to 
curb the encroachment of woody plants and ensuring a sustainable 
water supply. The novelty of this study lies in two key aspects: First, it 
investigated the impacts of afforestation and woody plant encroachment 
on river flow and the inflow of water into Lake Thunderbird under future 
climate conditions. Secondly, it introduced a large spectrum of forest 
expansion gradient scenarios, providing support for land management 
agencies in devising tailored afforestation and management strategies 
suited to different levels of forest coverage in the subhumid region. 

2. Methods and data 

2.1. Study domain 

We selected the Little River watershed in central Oklahoma (35.16 
◦N, 96.97 ◦W) as our study domain, which is a typical subhumid 
watershed situated in the transition zone between the forests in the 
eastern U.S. and the prairies in the Great Plains (Fig. 1). It encompasses a 
total area of 2528 km2 in the Cross Timbers ecoregion. The Little River 
originates in Cleveland County and flows ~140 km southeastwardly 
until it joins the Canadian River. Eventually, it merges with the Arkansas 
River and the Mississippi River. Notably, Lake Thunderbird on the Little 
River serves as the major water source for Oklahoma City metropolitan 
areas of Midwest City, Del City, and Norman. According to the statistics 
derived from the National Land Cover Dataset (NLCD) (Homer et al., 
2012), the major land cover types in the LRW are forest, grassland, and 
developed area, accounting for 48.48%, 39.16%, 8.46% of the water-
shed, respectively. In NLCD, developed area refers to areas characterized 
by a high percentage (30% or greater) of constructed material. The 
average elevation of the LRW is 315 m, with the highest elevations 
exceeding 370 m in the western part of the watershed and the lowest 
elevations below 250 m in the eastern part (Fig. S1). 

Based on the gridMET climate data (Abatzoglou, 2013) during 
2000–2019, the annual average temperature in the LRW was 16.8 ◦C, 
annual precipitation was 978 mm in depth (24.7 × 108 m3 in volume), 
and annual potential evapotranspiration was 1574 mm. The Aridity 
Index (AI), defined as the ratio of average annual precipitation to 
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average potential evapotranspiration, was calculated to be 0.62. This 
value indicates that the LRW falls within the subhumid climate zone, 
based on the climate classification scheme proposed by Middleton and 
Thomas (1997). The LRW has distinct seasonal variations in temperature 
and precipitation (Fig. S2). The highest monthly temperatures occur in 
June (25.9 ◦C), July (28.2 ◦C), and August (27.8 ◦C), while the lowest 
monthly temperatures are observed in December (5.2 ◦C), January 
(4.3 ◦C), and February (6.2 ◦C). May (143 mm month− 1 or 3.6 × 108 m3 

month− 1) and June (126 mm month− 1 or 3.2 × 108 m3 month− 1) receive 
the highest monthly precipitation, whereas November (54 mm month− 1 

or 1.4 × 108 m3 month− 1), December (47 mm month− 1 or 1.2 × 108 m3 

month− 1), January (36 mm month− 1 or 0.9 × 108 m3 month− 1), and 
February (50 mm month− 1 or 1.3 × 108 m3 month− 1) experience the 
lowest monthly precipitation. 

2.2. Overview of the SWAT+

In this study, we employed the Soil and Water Assessment Tool +
(SWAT+, version: 6.5.6.64) to conduct monthly simulations of stream-
flow in the LRW. SWAT is a comprehensive, semi-distributed hydro-
logical model for simulating streamflow, nutrient, and sediment 
transport at the basin level across various environmental conditions and 
land use/management practices (Arnold et al., 2012). SWAT + repre-
sents a significant improvement over the original SWAT. The major 
improvement is the incorporation of the landscape units, e.g. upland 
areas and floodplains. This improvement enables the simulation of water 
and nutrient movement from the upland landscape units to the flood-
plains (Bieger et al., 2017). In SWAT+, the landscape units are 
composed of multiple Hydrologic Response Units (HRUs), which are 
defined as a contiguous area with similar soil, plant, topographic, and 
climate conditions (Bailey et al., 2020). The land areas in a subbasin are 
composed of landscape units. Compared to the original SWAT, the 
SWAT + has greater flexibility in defining aquifers, whose boundaries do 
not have to coincide with the boundaries of HRU, landscape units, or 

subbasins. The hydrologic routines in SWAT + simulate surface runoff, 
lateral flow, and return flow, which reach river channels and turn into 
streamflow. 

SWAT + has been widely validated over recent years and used to 
simulate streamflow dynamics under climate change and forest expan-
sion scenarios (e.g. Chawanda et al., 2020; Kiprotich et al., 2021; 
Pulighe et al., 2021). These studies demonstrate the robustness of SWAT 
+ in representing the complexity of hydrological systems and providing 
insights into water resource management. 

2.3. SWAT + input data 

The key input datasets to drive SWAT + are Digital Elevation Model 
(DEM), land use and land cover type, soil properties, and climate con-
ditions. The DEM data used in this study was obtained from the 30-m 
Shuttle Radar Topography Mission (SRTM) dataset (Rodríguez et al., 
2006). The land use and land cover data was sourced from the National 
Land Cover Database 2019 (Homer et al. (2012)). Soil properties were 
derived from the gridded Soil Survey Geographic Database (gSSURGO) 
developed by the National Resource Conservation Service (NRCS), the 
United States Department of Agriculture (USDA). A soil lookup table was 
created to link SSURGO soil map unit key (MUKEY) to soil names in 
SWAT + soil table and extract soil properties. All these aforementioned 
datasets were converted to the same projection type of the USGS Albers 
Equal Area projection system. They were then resampled to a spatial 
resolution of 120 m to ensure data compatibility and consistency. Based 
on these input datasets, HRUs were delineated in SWAT+. Grids in each 
HRU have similar land cover type, soil type, and topographic factors 
(Fig. S3). Finally, a total of 5769 HRUs and 13 subbasins were generated 
to represent the hydrologic responses characteristics of different com-
binations of land use, soil properties, and topography in the LRW. We 
also added two reservoirs (i.e., Lake Thunderbird and Lake Stanley 
Draper) in the LRW, which were simply treated as impoundments 
without dam operations in this study. 

Fig. 1. Study domain of the Little River Watershed in central Oklahoma and the location of Lake Thunderbird. Land use/land cover type is from the National Land 
Cover Dataset (NLCD). Watershed boundary and river channels are derived from the Shuttle Radar Topography Mission (SRTM) elevation data. Distribution of the 
subhumid region was identified based on Aridity Index in the range between 0.5 and 0.65. 
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Climate data to drive SWAT+ were collected from two sources, 
including the gridMET data (Abatzoglou, 2013) and the Multivariate 
Adaptive Constructed Analogs (MACA) v2 developed by Abatzoglou and 
Brown (2012), both of which have a spatial resolution of approximately 
4 km. Climate variables to drive SWAT + include daily max-
imum/minimum temperature, precipitation, solar radiation, humidity, 
and wind speed. The observation-based gridMET data was used to drive 
SWAT + for model calibration and validation. The MACA v2 data, on the 
other hand, provides the downscaled climate data from Earth System 
Models (ESMs) under two Representative Concentration Pathways 
(RCP) of the CMIP5 project, i.e., RCP45 and RCP85 (Taylor et al., 2012). 
The MACA v2 data corrected biases in all these climate variables of the 
ESM simulations based on the gridMET climate conditions from 1979 to 
2012. To account for the divergences in climate conditions simulated by 
ESMs, climate data from five ESMs were used to drive SWAT+, including 
bcc-CSM1 (bcc), GFDL-ESM2G (GFDL), HadGEM2-ES365 (HadGEM), 
IPSL-CM5A-LR (IPSL), and MIROC5 (MIROC). In the MACA v2 dataset, 
these five ESMs provided all necessary climate variables to drive the 
SWAT+. Fig. S4 shows that, during the period of 2000–2019, monthly 
variations of the bias-corrected climate variables from MACA v2 match 
the data extracted from gridMet. 

In the simulation period of 2000–2019, the average CO2 concentra-
tion was set to 390 ppm based on global CO2 data provided by NOAA 
Global Monitoring Laboratory. For the simulation period of 2080–2099, 
CO2 concentration was set to 535 ppm for the RCP45 and 837 ppm for 
the RCP85 based on the RCP database version 2.0 (https://tntcat.iiasa. 
ac.at/RcpDb). 

2.4. Forest expansion scenarios 

Land use and land cover data for the contemporary period 
(2000–2019) was obtained from NLCD 2019. For the period of 
2080–2099, we developed 11 forest expansion scenarios (FE0 to FE10) 
with variations in forest and grassland areas. For FE0, it is assumed that 
land use and land cover type during 2080–2099 remains the same as that 
in 2000–2019. For FE1 – FE10, it is assumed that 10%, 20%, 30%, 40%, 
50%, 60%, 70%, 80%, 90%, and 100% of the current grasslands will be 
converted into forests during 2080–2099. We acknowledge that it is 
unlikely for the grasslands to be entirely converted to forests due to the 
limited resources (Sankaran et al., 2005). As our objective is to deter-
mine the variations in streamflow across a full spectrum of forest 
expansion, we kept the forest expansion scenarios with high-level in-
crease in forest area. 

As the encroachment of eastern redcedar is widely happening in 
Oklahoma grasslands (Wang et al., 2017), it is selected as the woody 
plant species that replaces grasslands in the ten forest expansion sce-
narios. To determine locations of redcedar encroachment in these sce-
narios, we simulated redcedar habitat suitability in the existing 
grassland areas using maximum entropy modeling (MaxEnt) (Elith et al., 
2011; Phillips and Dudík, 2008). Habitat suitability in this study refers 
to the ability of a habitat to support the survival and growth of a plant. 
We collected training samples from the USDA Forest Inventory and 
Analysis (FIA) National Program and used climate conditions, topog-
raphy, and soil texture and properties as the predictor variables to 
simulate the spatial pattern of habitat suitability in Oklahoma. The 
process to estimate redcedar habitat suitability is summarized in Text S1 
and the detailed process can be found in our recent publication (Yang 
et al., 2024). Fig. S5 shows the spatial pattern of the suitability map, 
based on which we identified nine thresholds at the 10th, 20th, 30th, 
40th, 50th, 60th, 70th, 80th, and 90th percentiles to separate the 
grassland grids into ten equal portions and replaced the selected grass-
land grids with evergreen forests in the respective forest expansion 
scenarios (Fig. S6). Finally, we used each of the 10 maps of land cover 
types to generate new HRU maps for SWAT + simulations in these forest 
expansion scenarios. 

2.5. Calibration and validation 

The LRW has two USGS river gauge stations to monitor Little River 
water quantity and quality. The first station, USGS 07230500, is located 
near Tecumseh, OK (35.17◦ N, 96.93◦ W) and situated right below Lake 
Thunderbird. Due to the influence of lake water use and dam operation 
on streamflow at this site, it is not used for model calibration in this 
study. Instead, the second gauge station, USGS 07231000, was located 
near Sasakwa, OK (34.97◦ N, 96.51◦ W) and close to the watershed 
outlet (Fig. 1). We used the monthly streamflow records at this station to 
calibrate SWAT + parameters and validate model performance. 

The model calibration period extended from January 2002 to 
December 2014, and the validation period encompassed January 2015 
to December 2021. We used three evaluation metrics recommended by 
Moriasi et al. (2007), i.e., the Nash-Sutcliffe Efficiency (NSE), Percent 
Bias (PBIAS), and the ratio of the root mean square error to the standard 
deviation of measured data (RSR), to assess model performance against 
the streamflow measurements obtained from the USGS gauge station. 
Prior to model calibration, SWAT+ was initially executed using the 
default parameter values. The simulated streamflow achieved an NSE 
value of 0.76, indicating a “very good” level of performance according to 
the rating criteria established by Moriasi et al. (2007). To further 
enhance the simulation results, an auto-calibration procedure was 
applied using the Dynamically Dimensioned Search (DDS) Algorithm 
(Tolson and Shoemaker, 2007) to calibrate ten model parameters (listed 
and explained in Table 1) that potentially affect the ecosystem water 
budget. These parameters were selected based on previous studies that 
aimed to enhance the performance of SWAT or SWAT+ in simulating 
streamflow (e.g. Arnold et al., 2012; Qiao et al., 2015). We assessed 
parameter sensitivity by examining the impact of a 20% increase and 
decrease in each of the 10 selected model parameters on the simulated 
streamflow (Fig. S7). This sensitivity test revealed that the magnitude of 
the simulated streamflow in the Little River is notably influenced by 
eight out of the ten parameters: canmx, alpha, cn2, epco, esco, K, perco, 
and revap_co. Particularly, cn2 and perco are the two most influential 
parameters. Despite the minimal effect of ovn and surlag on the 
magnitude of streamflow, they are anticipated to alter flow velocity, the 
time needed for runoff to reach river channels, etc. Hence, we included 
these two parameters in the model calibration process. 

In the calibration process, the percentage change in the original 
parameter values was utilized to adjust the model parameters. For the 
DDS algorithm, we set the number of total iterations to 200 and the 
neighborhood perturbation size parameter to 0.2 and used NSE as the 
objective function. Text S2 provides a detailed description of the cali-
bration process using the DDS algorithm. During the auto-calibration 
procedure, the best NSE improved with the number of iterations and 
eventually reached a value of 0.82 (Fig. S8). Table 1 provides the 
optimal values of the ten selected model parameters that were obtained 
through the calibration process. 

Table 1 
Calibrated biophysical and hydrological parameters for SWAT + simulations in 
the Little River Watershed.  

Parameters Changed 
percentage (%) 

Description 

canmx 12.4 The maximum amount of water that the canopy 
can hold when fully developed 

alpha − 4.49 The baseflow recession constant 
cn2 7.38 The Soil Conservation Service (SCS) Curve 

Number (CN) 
epco 5.03 Plant uptake compensation factor 
esco 1.36 Soil evaporation compensation factor 
K 10.4 Soil saturated hydraulic conductivity 
ovn 6.98 Manning’s “n” value for overland flow 
perco 14.69 Percolation coefficient 
revap_co − 4.46 Groundwater “revap” coefficient. 
Surlag 12.84 Surface runoff lag coefficient  
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Next, the calibrated parameters were employed to simulate stream-
flow dynamics from January 2002 to December 2021 (Fig. 2). In the 
model validation period (January 2015 to December 2021), the cali-
brated SWAT + model exhibited high performance. The NSE value was 
0.93, suggesting a strong agreement between the simulated and 
observed monthly streamflow. PBIAS was − 20.1%, indicating a slight 
overestimation of the streamflow by the model. RSR was 0.26, indi-
cating a good precision of the model in capturing the variability of the 
observed streamflow. The calibrated parameters in Table 1 were used 
for all the HRUs and all the model simulations in this study. 

In addition, we conducted tests to assess whether SWAT+ with 
calibrated parameter could well represent the daily variations in 
streamflow during 2002–2021 in the Little River Watershed (Fig. S9). 
The results indicate that SWAT + captured the daily variations in 
streamflow (R2 = 0.54). The model also performed well in replicating 
baseflow during the relatively dry periods. Nevertheless, it is important 
to note that the peak flow simulated by SWAT+ was higher than the 
USGS measurements, which explains the negative PBIAS values in model 
calibration and validation (Fig. 2). 

2.6. Water budget comparison between grasslands and forests 

Woody plants, owing to their deeper root and higher foliage area, 
typically exhibit higher water use and ET rates compared to herbaceous 
plants (Adane et al., 2018; Sheil, 2018). The increase in forest coverage 
can result in a notable increase in global evapotranspiration (ET) (Wang 
et al., 2021) and affect water yield (Shi et al., 2011). To simulate the 
impact of land cover change on streamflow, it is necessary to have 
reasonable estimates of water budget in grasslands and forests. How-
ever, due to the absence of water flux and runoff measurements in the 
LRW, we gathered data from adjacent areas in other studies and sub-
sequently made comparisons with SWAT + simulations. 

Zou et al. (2014) investigated the alteration of hydrological pro-
cesses caused by WPE in a mesic grassland watershed located ~90 km 
north of our study area and reported that the annual runoff coefficients 
during 2009–2011 were 10.6% in grassland watershed, compared to 
2.1% in the WPE watershed. In the same three years, our SWAT + results 
showed an average runoff coefficient of 12% in the grassland HRUs and 
3.7% in the forest HRUs in the LRW. Notably, SWAT + effectively 
captured the higher runoff coefficient in grasslands than that in forests 
as observed by Zou et al. (2014). It is also noteworthy that SWAT +
simulated slightly higher runoff coefficients by 1.4–1.6% than Zou et al. 
(2014). These disparities could be attributed to differences in climate 

and vegetation conditions between the two watersheds. 
Based on remote sensing observations, Wang et al. (2018b) found 

that land conversion from grasslands to juniper woodlands in Oklahoma 
could result in a substantial increase in ET by 30–55%. The ET differ-
ences between forests and grasslands have been confirmed by site ob-
servations (Duesterhaus, 2008). Our SWAT + simulations in the period 
of 2000–2019 indicated that annual ET in forest HRUs was 47% higher 
than in grassland HRUs (with values of 600 mm for grassland and 881 
mm for forests), aligning with the results reported by Wang et al. 
(2018b). SWAT + simulations generally captured the distinct water 
budget variations between grasslands and forests. Therefore, our cali-
brated SWAT+ is suitable for quantifying the impacts of forest expansion 
on streamflow in the subhumid region. 

2.7. Model experimental design and result analyses 

In this study, a total of 121 SWAT + simulations were designed to 
simulate monthly streamflow dynamics at the beginning and end of the 
21st century under various climate and forest expansion scenarios 
(Table S1). For the contemporary period of 2000–2019, 11 simulations 
(S1 – S11) were conducted with NLCD 2019 land cover data and climate 
conditions from gridMet and the five ESMs in the MACA v2 dataset. In 
the future period of 2080–2099, 110 simulations were designed to assess 
the impacts of climate change and land cover change on streamflow. 
These simulations were carried out using climate data from the five 
ESMs in the RCP45 and RCP85 scenarios and land cover data in eleven 
forest expansion scenarios (Fig. S6). In this study, we did not make 
model simulations for the middle century. SWAT + simulates forest 
water dynamics during the mature stage of forests. Given forest expan-
sion and tree growth take time, it is unlikely for all trees to reach 
maturity by the middle of the century, Hence, we opted to conduct 
SWAT + future simulations for the period of 2080–2099. 

The simulations of S2 – S11 and the simulations of S12 – S21 
involved the use of the same land cover data but differed in climate data. 
Specifically, S2 – S11 simulations utilized MACA v2 climate data for the 
period of 2000–2019, while S12 – S21 simulations utilized MACA v2 
climate data for the period of 2080–2019. Consequently, the disparity in 
streamflow between the two sets of simulations can be attributed to the 
effects of climate change between the early and end of the 21st century 
in the RCP45 and RCP85 scenarios. Additionally, the simulations of S12 
– S21, S22 – S31, S32 – S41, S42 – S51, S52 – S61, S62 – S71, S72 – S81, 
S82 – S91, S92 – S101, S102 – S111, and S112 – S121 employed the same 
MACA v2 climate data for the period 2080–2099 but differed in the land 

Fig. 2. Comparison of monthly streamflow ( × 108 m3 month− 1) between SWAT + model simulation and measurements at USGS gauge station (ID: 07231000). 
Model calibration period was between January 2002 and December 2014 and the validation period was from January 2015 to December 2021. Three evaluation 
metrics were used to evaluate model performance, including Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and ratio of the root mean square error to the 
standard deviation of measured data (RSR). 
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cover in the 11 forest expansion scenarios. Therefore, the variations 
between the 11 groups of simulations elucidate impacts of the increased 
woody plant area on streamflow. 

Our analysis primarily focused on the streamflow at the watershed 
outlet. Additionally, we also considered the inflow into Lake Thunder-
bird, given its importance for understanding the long-term sustainability 
of water supply for the Oklahoma City metropolitan area in response to 
the changing climate conditions and land cover types. 

3. Results 

3.1. Climate change in the Little River Watershed 

The LRW was projected to undergo significant climate change be-
tween the first and last 20-year periods of the 21st century, as outlined in 
Table 2. Based on the average climate data from the five ESMs, it is 
expected that the annual temperature in this region will increase from 
17.3 ◦C to 19.4 ◦C in the RCP45 and from 17.2 ◦C to 22.3 ◦C in the 
RCP85. The increase in temperature is consistent across all the five 
ESMs, with projected temperature rises ranging from 1.5 ◦C to 2.6 ◦C for 
the RCP45 and from 3.8 ◦C to 6.1 ◦C for the RCP85. 

According to the average of the five ESMs, the projected changes in 
precipitation for the LRW indicated contrasting trends between the 
RCP45 and the RCP85. Under the RCP45, the average annual precipi-
tation was expected to increase slightly by 2.4%, from 1011 mm (25.6 ×
108 m3 year− 1) during 2000–2019 to 1035 mm (26.2 × 108 m3 year− 1) 
during 2080–2099. Four out of the five ESMs projected an increase in 
annual precipitation, while one ESM (GFDL) showed a decrease. In 
contrast, the RCP85 scenario suggested a decline in average annual 
precipitation for the LRW. The average of the five ESMs indicated a 
decline of 7.1% from 1035 mm (26.2 × 108 m3 year− 1) to 961 mm (24.3 
× 108 m3 year− 1). Four ESMs projected a decrease in annual precipita-
tion, while one ESM (MIROC) showed an increase. Overall, these pro-
jections suggested that the LRW will experience a wetter climate in the 
RCP45 but a drier environment in the RCP85 by the end of the 21st 
century. 

3.2. Changes in streamflow due to climate change 

Climate change was projected to impose diverged impacts on 
streamflow at watershed outlet between the RCP45 and RCP85 scenarios 
(Fig. 3). During 2000–2019 in the RCP45, the average streamflow at the 
LRW outlet, simulated by SWAT + using climate data from the five 
ESMs, ranged from 3.84 × 108 m3 year− 1 (IPSL) to 5.18 × 108 m3 year− 1 

(MIROC), with an average of 4.68 × 108 m3 year− 1. In the last 20 years 
of the 21st century, the simulated streamflow in the RCP45 ranged from 
4.04 × 108 m3 year− 1 (GFDL) to 5.67 × 108 m3 year− 1 (MIROC), with an 
average of 4.92 × 108 m3 year− 1. In the RCP45, the annual average 
streamflow at the outlet was expected to increase by 0.24 × 108 m3 

year− 1 (5.1%) between the first and last 20 years of the 21st century. The 
increase in streamflow under the RCP45 can be attributed to the higher 
precipitation rate at the end of the 21st century (Table 2). However, it is 

worth noting that SWAT + also simulated a slight increase in annual 
evapotranspiration at the watershed scale, from 750 mm (19.0 × 108 m3 

year− 1) to 766 mm (19.4 × 108 m3 year− 1). This increase in evapo-
transpiration was projected to partially offset the impact of increased 
precipitation on streamflow. 

During 2000–2019 in the RCP85, the average streamflow simulated 
by SWAT + driven by climate data from the five ESMs ranged from 4.33 
× 108 m3 year− 1 (MIROC) to 5.74 × 108 m3 year− 1 (GFDL), with an 
overall average of 5.17 × 108 m3 year− 1. During 2080–2099, the 
average streamflow simulated by SWAT + ranged from 3.26 × 108 m3 

year− 1 (IPSL) to 3.95 × 108 m3 year− 1 (HadGEM), with an average of 
3.61 × 108 m3 year− 1. This suggested a notable decrease in annual 
streamflow of 1.56 × 108 m3 year− 1 (30.1 %) at the watershed outlet 
between the first and last 20 years of the 21st century in the RCP85. 
Furthermore, the average annual evapotranspiration at the watershed 
level was projected to increase from 749 mm (18.9 × 108 m3 year− 1) 
during 2000–2019 to 760 mm (19.2 × 108 m3 year− 1) during 
2080–2099. Therefore, the reduction in streamflow in the RCP85 can be 
attributed to both the decreased precipitation (Table 2) and increased 
evapotranspiration. 

In the RCP45, monthly variations of the simulated streamflow in the 
period 2080–2099 were similar to those in 2000–2019 (Fig. 4). Between 
the two 20-year periods, streamflow was projected to show a decline of 
8.9% between January and April but an increase of 22.9% between July 
and December. On the other hand, in the RCP85, all months were pro-
jected to experience a decrease in streamflow. The largest declines were 
in spring and early summer. Specifically, streamflow in March, April, 
May, and June was projected to decrease by 35.8%, 44.8%, 50.1%, and 
42.3%, respectively, compared to the streamflow levels in the contem-
porary period. These changes in monthly streamflow patterns indicated 
the significant impacts of climate change on the seasonal pattern of 
streamflow in the LRW. 

3.3. Changes in streamflow due to increased forest coverage 

Our projections revealed a clear trend: as forest coverage increases, 
watershed ET would increase while streamflow would show a corre-
sponding decrease, following a linear relationship under both the RCP45 
and the RCP85 scenarios (Fig. 5). During the period of 2080–2099, if all 
the current grasslands are replaced by forests, annual ET is expected to 
increase by 95.6 mm (2.3 × 108 m3 year− 1 or 12.5%) in the RCP45 and 
70.7 mm (1.7 × 108 m3 year− 1 or 9.3%) in the RCP85. Furthermore, 
each 10% grassland conversion to forests would lead to an incremental 
rise in watershed ET by 10.4 mm year− 1 (0.3 × 108 m3 year− 1 or 1.3%) 
in the RCP45 and 7.5 mm year− 1 (0.2 × 108 m3 year− 1 or 0.9%) in the 
RCP85. Conversely, if all grasslands are replaced by forests, the average 
simulated streamflow would decrease significantly by 41.1% from 4.92 
× 108 m3 year− 1 to 2.9 × 108 m3 year− 1 in the RCP45 and by 41% from 
3.61 × 108 m3 year− 1 to 2.13 × 108 m3 year− 1 in the RCP85. Each 10% 
grassland conversion to forests would further reduce streamflow by 
0.21 × 108 m3 year− 1 (5.3 %) in the RCP45 and 0.16 × 108 m3 year− 1 

(5.3 %) in the RCP85. The decline in streamflow can be attributed 

Table 2 
Statistics of annual temperature and precipitation in the Little River Watershed in the two 20-year periods of 2000–2019 and 2080–2099. In the precipitation columns, 
values within the parentheses show the precipitation volume in the unit of × 108 m3 year− 1.   

Temperature (◦C) Precipitation (mm year− 1 or × 108 m3 year− 1) 

RCP45 RCP85 RCP45 RCP85 

2000–2019 2080–2099 2000–2019 2080–2099 2000–2019 2080–2099 2000–2019 2080–2099 

bcc 17.1 18.6 17.1 21.6 1055 (26.7) 1086 (27.5) 1040 (26.3) 928 (23.5) 
GFDL 16.7 18.4 16.8 20.6 1043 (26.4) 954 (24.1) 1057 (26.7) 950 (24.0) 
HadGEM 17.6 20.2 17.6 22.7 982 (24.8) 1011 (25.6) 1047 (26.5) 1006 (25.4) 
IPSL 17.6 19.7 17.3 23 958 (24.1) 1000 (25.3) 1049 (26.5) 928 (23.5) 
MIROC 17.4 19.9 17.3 23.4 1017 (25.7) 1122 (28.4) 984 (24.9) 994 (25.1) 
Average 17.3 19.4 17.2 22.3 1011 (25.6) 1035 (26.2) 1035 (26.2) 961 (24.3)  
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primarily to the increase in evapotranspiration. 
We further evaluated the decrease in streamflow during the wet, 

normal, and dry years caused by forest expansion in the period of 
2080–2099 (Fig. 6). Wet years, normal years, and dry years were defined 
based on annual precipitation: wet years refer to the years with annual 
precipitation greater than the 90th percentile, dry years refer to the 
years with annual precipitation less than the 10th percentile, and normal 
years refer to the years with annual precipitation between the 10th and 
the 90th percentiles (Pan et al., 2020). Results show that, if all grass-
lands were replaced by forests in the RCP45 scenario, average stream-
flow would decrease by 4.8 × 108 m3 year− 1 (37.4%) from 12.9 × 108 

m3 year− 1 to 8.1 × 108 m3 year− 1 in the wet years, by 1.8 × 108 m3 

year− 1 (42.4%) from 4.3 × 108 m3 year− 1 to 3.5 × 108 m3 year− 1 in the 
normal years, and by 0.7 × 108 m3 year− 1 (41.4%) from 1.7 × 108 m3 

year− 1 to 1.0 × 108 m3 year− 1 in the dry years. Additionally, if all 
grasslands were replaced by forests in the RCP85 scenarios, average 
streamflow would decrease by 4.3 × 108 m3 year− 1 (43.1%) from 9.9 ×
108 m3 year− 1 to 5.6 × 108 m3 year− 1 in the wet years, by 1.3 × 108 m3 

year− 1 (40.3%) from 3.1 × 108 m3 year− 1 to 1.9 × 108 m3 year− 1 in the 
normal years, and by 0.4 × 108 m3 year− 1 (33.0%) from 1.1 × 108 m3 

year− 1 to 0.8 × 108 m3 year− 1 in the dry years. 

3.4. Water inflow to Lake Thunderbird 

Based on simulation S1, the average water inflow into Lake Thun-
derbird during 2000–2019 was 0.98 × 108 m3 year− 1, exhibiting sig-
nificant monthly and interannual variations (Fig. 7). Among the years 
analyzed, the highest annual inflows were observed in 2007 (2.24 × 108 

m3 year− 1) and 2015 (3.16 × 108 m3 year− 1). Conversely, the lowest 
annual inflows were in 2003 (0.39 × 108 m3 year− 1), 2006 (0.36 × 108 

m3 year− 1), 2011 (0.5 × 108 m3 year− 1), 2012 (0.49 × 108 m3 year− 1), 
and 2014 (0.43 × 108 m3 year− 1). At the monthly scale, the highest 
inflows into Lake Thunderbird were in early summer. Specifically, May 
and June exhibited inflow rates of 19.5 × 106 m3 month− 1 and 13.6 ×
106 m3 month− 1, respectively. On the other hand, the lowest inflows 
occurred in winter months, with December, January, and February 
recording rates of 4.4 × 106 m3 month− 1, 3.8 × 106 m3 month− 1, 4.1 ×
106 m3 month− 1, respectively. 

According to the average of SWAT + simulations driven by climate 
data from five ESMs, the water inflow into Lake Thunderbird would 
exhibit different trends under the RCP45 and the RCP85, consistent with 
the simulated streamflow at the watershed outlet. In the RCP45 sce-
nario, future climate change was anticipated to result in an increase in 

Fig. 3. Simulated annual streamflow ( × 108 m3 year− 1) at the outlet of the Little River Watershed simulated by SWAT+ in the two 20-year periods of 2000–2019 
and 2080–2099 under the RCP45 and RCP85 scenarios. SWAT+ was driven by climate data from five Earth System Models, including bcc, GFDL, HadGEM, IPSL, and 
MIROC. The box plot presents streamflow variations in the 20-year simulation period. The triangles show the average of the 20-year streamflow. 

Fig. 4. Average monthly streamflow ( × 108 m3 month− 1) of the Little River Watershed simulated by SWAT+ in the 20-year periods of 2000–2019 and 2080–2099 
under the RCP45 (left) and RCP85 (right). SWAT+ was driven by climate data from five Earth System Models, including bcc, GFDL, HadGEM, IPSL, and MIROC. The 
gray and pink shaded areas show the ±1 standard deviation of the simulation results driven by climate data from five Earth System Models. 

J. Yang et al.                                                                                                                                                                                                                                    



Journal of Environmental Management 357 (2024) 120780

8

water inflow by 3.6% from 1.1 × 108 m3 year− 1 during the period of 
2000–2019 to 1.14 × 108 m3 year− 1 during the period of 2080–2099. 
Climate change under the RCP85 scenario was expected to reduce water 
inflow into Lake Thunderbird by 24.8% from 1.21 × 108 m3 year− 1 

during the period of 2000–2019 to 0.91 × 108 m3 year− 1 during the 

period of 2080–2099. 
The conversion of grassland to forest is anticipated to lead to a 

considerable reduction in water inflow into Lake Thunderbird, impact-
ing future water availability for the Oklahoma City metropolitan area. 
We conducted a comparative analysis of the simulated annual water 

Fig. 5. The simulated annual average evapotranspiration (ET, × 108 m3 year− 1) in the Little River Watershed and streamflow ( × 108 m3 year− 1) at the outlet during 
2080–2099 under 11 forest expansion scenarios (FE0 – FE10) and two climate scenarios of the RCP45 and the RCP85. The shade area shows the ±1 standard 
deviation of the simulation results driven by climate data from five Earth System Models. Dash lines denote the level of average ET or streamflow during 2000–2019 
in the RCP45 and the RCP85 scenarios. 

Fig. 6. The changes in streamflow ( × 108 m3 year− 1) with forest expansion under 11 forest expansion scenarios (FE0 – FE10) in the wet (blue), normal (green), and 
dry (red) years. Streamflow was simulated at the outlet of the Little River Watershed during 2080–2099 under two climate scenarios of the RCP45 and the RCP85. 
The shade area shows the ±1 standard deviation of the simulation results driven by climate data from five Earth System Models. 
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inflow into Lake Thunderbird across the 11 forest expansion scenarios 
(FE0 – FE10) during 2080–2099 with the water inflow in the two 
extremely dry years 2011 and 2012 (0.49 × 108 m3 year− 1). In these two 
years, the lake water level was 2.1 m below the recommended conser-
vation pool (Fig. 8). The results indicated that under the scenario of no 
forest expansion (FE0), there would be an average of 5.4 years in the 
RCP45 and 6.6 years in the RCP85 during 2080–2099 with lower water 
inflow into Lake Thunderbird than the rates experienced during 2011/ 
2012. When 50% of the grasslands are converted into forests (FE5), the 
duration would extend to 6.8 years for both the RCP45 and RCP85. In 
the scenario that all grasslands are replaced by forests (FE10), an 
average of 8.6 years and 9.4 years would experience a low water inflow 
into Lake Thunderbird in the RCP45 and the RCP85, respectively. 

4. Discussion 

4.1. Water resources availability under climate change 

Climate change plays a significant role in altering river flows and has 
substantial implications for future water resources (Döll and Schmied, 
2012). In the United States, Caldwell et al. (2012) used an water balance 
and flow routing model to project future river flow and found a 16% 
decrease in mean annual river flows in the 2060s compared to the 2010s, 
highlighting the impact of climate change on surface water availability 
at the national level. In the LRW, our simulations showed that by the end 
of the 21st century, streamflow will experience a slight increase of 5.1% 
in the RCP45 due to increased precipitation. However, in the RCP85, 

Fig. 7. Water inflow into Lake Thunderbird during 2000–2019, simulated by SWAT + driven by gridMET climate data. (A) Monthly variations ( × 108 m3 month− 1), 
(B) interannual variations ( × 108 m3 year− 1), and (C) monthly average ( × 108 m3 month− 1). 
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streamflow was projected to significantly decrease by 30.1 % as a result 
of reduced precipitation and enhanced evapotranspiration. Notably, the 
decline was projected to be particularly pronounced during spring and 
early summer. As spring is the season with the highest precipitation and 
streamflow in the subhumid region in the United States, water storage in 
reservoirs is replenished by streamflow in this season. The projected 
decline in spring streamflow can significantly reduce water storage in 
reservoirs in central United States and limit the sustainable water supply 
under the RCP85 climate scenarios. Noted that the decrease in seasonal 
streamflow does not necessarily indicate a lower flood risk. It is possible 
that future climate change reduces annual and seasonal precipitation 
while enhancing the likelihood of extreme precipitation events and 
consequent flooding (Tabari, 2020). 

Although climates projected by different ESMs showed considerable 
divergence, the average results in the RCP45 scenario demonstrated a 
slight increase in streamflow, offering potential support for a sustainable 
water supply in the central United States. Presently, numerous climate 
change mitigation strategies are being investigated or implemented in 
countries with substantial carbon emissions, such as the United States, 
China, and the European Union (Chen et al., 2022). These mitigation 
strategies encompass various approaches, including but not limited to 
renewable energy production (Hanssen et al., 2020), transport electri-
fication (Zhang and Fujimori, 2020), and reforestation (Silver et al., 
2000). Implementing these strategies has the potential to deviate future 
climate change from the trajectory of the RCP85 scenario, consequently 
improving water resource availability in the central United States. 

4.2. Global implications for afforestation 

Our simulations demonstrated that land conversion from grasslands 
to forests would have large impacts on evapotranspiration and subse-
quent streamflow, which is applicable to the broader subhumid region at 
the global level. If all grasslands were to be replaced by forests, 
streamflow in the LRW was projected to decrease by 41% compared to 
the scenario without land cover change. Additionally, over the 20-year 
period of 2080–2099, Lake Thunderbird would experience an average 
of 8.6 years in the RCP45 and 9.4 years in the RCP85 with water inflow 
amounts lower than those during the 2011/2012 extreme drought event. 
These results emphasize that forest expansion due to afforestation or 
WPE can substantially diminish water resources sustainability in the 
subhumid ecoregion irrespective of the climate change scenarios. While 
afforestation/reforestation efforts in the subhumid region offer 
numerous ecological benefits, it is crucial to approach afforestation 
strategies with careful consideration of the potential decline in water 
availability, particularly in watersheds critical for municipal water 

supply. 
The impact of afforestation on surface runoff varies significantly 

across different climate zones, with estimates indicating a reduction 
from 54% in drier areas to less than 15% in more humid areas (Trabucco 
et al., 2008). Moreover, studies suggest that afforestation in humid areas 
might have a modest effect on groundwater storage (Ouyang et al., 
2021). When considering water resource management, implementing 
large-scale afforestation appears more suitable for humid regions. 
However, it is important to note that afforestation has been imple-
mented across the global subhumid and dryland areas, which was 
observed to increase ecosystem water consumption. Consequently, 
implementation of afforestation in subhumid and dryland areas neces-
sitates meticulous planning, accounting for factors such as heightened 
ET with tree cover, the response of dryland forests to future climate 
change, and their potential socioeconomic impacts (Liu et al., 2022). 

4.3. Potential management strategies to control woody plant 
encroachment 

A variety of management strategies have been employed to curb the 
spread of woody species in grasslands. Herbicide injection, initiated in 
the 1960s, has been used to eliminate woody plants (Archer and Predick, 
2014). However, this method is labor-intensive and offers relatively 
short-term effectiveness of less than 10 years (Scholtz et al., 2021). 
Another way to control redcedar spread involves mechanical removal. 
This is a common practice for quickly reclaiming the encroached land 
(Morton et al., 2010). However, mechanical treatment can be costly, 
ranging from $25 and $100 per acre depending on tree size and density. 
Currently, the most effective strategy for controlling redcedar 
encroachment is probably the implementation of prescribed fires (Wil-
cox et al., 2018). Given the fact that eastern redcedar is highly intolerant 
to fires (Jeffries et al., 2023), prescribed burns can effectively eliminate 
redcedar seedlings in grasslands. Redcedar trees with a height up to 4.5 
m can be eliminated when fire intensity reaches 160 kJ m− 1 s− 1 

(Twidwell et al., 2013). 

4.4. Uncertainties and future research needs 

SWAT + demonstrated excellent performance in simulating the 
monthly variations of streamflow in the LRW, as evidenced by the high 
NSE of 0.93 in the model validation period. Moreover, SWAT + simu-
lated a higher ET in forests compared to grasslands, aligning with pre-
vious field measurements and remote sensing results. This indicated that 
SWAT + can successfully capture streamflow dynamics under diverse 
climate conditions and land conversion scenarios. However, in this 

Fig. 8. Number of years with low annual water inflow into Lake Thunderbird during 2080–2099 in the 11 forest expansion scenarios (FE0 – FE10). The threshold to 
define low annual water inflow is the inflow amount in 2011 and 2012. The shaded area shows the ±1 standard deviation of SWAT + simulation results driven by 
climate data from five Earth System Models. 
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study, SWAT + overestimated the peak flow to a certain degree. Addi-
tionally, it is important to note that future climate data generated from 
ESMs introduced considerable uncertainties in river flow simulations 
(Prudhomme and Davies, 2009; van Vliet et al., 2013). In this study, we 
utilized future climate data from five ESMs to drive the SWAT+ and 
showed the ensemble mean and range of simulated streamflow to 
represent the uncertainty associated with future climate projections. 

Future climate change is accompanied by rising CO2 concentration, 
which modifies land hydrological processes through its effects on 
vegetation biophysical and physiological conditions (Piao et al., 2007; 
Shi et al., 2011; Yang et al., 2023). The current version of SWAT +
allowed us to specify a fixed CO2 concentration in each 20-year simu-
lation period. Recent studies indicated that incorporating interannual 
variations in CO2 input instead of a fixed value can lead to different 
patterns of evapotranspiration and river flow (Wu et al., 2012; Zhang 
et al., 2022). Therefore, the inclusion of annual CO2 input data could be 
a necessary step for the improvement of SWAT + to reduce the un-
certainties in streamflow projections under future climate conditions. 

Another source of uncertainty in SWAT + emerges from its handling 
of tree growth. Being a hydrological model, SWAT + primarily simulates 
forest hydrological processes at a mature stage. However, it is widely 
acknowledged that ecosystem ET and other water processes vary 
significantly with forest conditions and canopy coverage (Cornish and 
Vertessy, 2001). Therefore, the accuracy of SWAT+‘s estimation for ET 
and runoff could be less reliable for young forests in their early growth 
stage. 

Ecosystems within the subhumid region exhibit a high sensitivity to 
both climate variations and long-term climate change (Knapp et al., 
1998). Understanding hydrological processes in forests and grasslands 
as well as the distinctions between these ecosystems in the subhumid 
region is vital for modeling regional water availability under the shifting 
composition of ecosystems and changing future climate conditions. 
Considering this, we suggest the installation of sufficient eddy covari-
ance flux towers, soil moisture probes, and H flumes in paired forest and 
grassland experimental watersheds in forest-grassland transition zone. 
This expanded data collection effort will significantly contribute to 
refining hydrological models and enhancing the projection accuracy of 
regional water availability. 

Our study focused on the examination of streamflow variations 
under climate change and forest expansion. Baseflow, integral to 
streamflow, sustains minimum water supply during dry seasons and 
droughts (Lee and Ajami, 2023). In dry areas, changes in forest coverage 
might have a dual impact on groundwater recharge and baseflow 
(Acharya et al., 2018). For example, Wilcox (2002) discovered that the 
reduction in woodland area could augment groundwater recharge, 
while Ilstedt et al. (2016) noted that increased tree cover could enhance 
groundwater recharge and baseflow. Our study did not specifically 
analyze the changes in baseflow with forest expansion. We conducted a 
preliminary analysis to compare monthly streamflow between FE0 and 
FE10 (Fig. S10). The result showed that forest expansion could slightly 
reduce streamflow during the dry period, indicating a small but negative 
impact of forest expansion on baseflow in the Little River Watershed. 
Additional research is still needed to comprehend how forest expansion 
influences baseflow variations under future climate conditions in sub-
humid regions. 

5. Conclusions 

In this study, we utilized the SWAT + to simulate the monthly var-
iations of streamflow in the Little River Watershed and water inflow into 
Lake Thunderbird, considering both present and future climate condi-
tions, as well as eleven forest expansion scenarios. Our findings provided 
valuable insights into the potential impacts of future climate change and 
the expansion of forest coverage on water resources in the subhumid 
region. First, our results indicated that, driven by climate data from 
multiple ESMs, average annual streamflow in the Little River Watershed 

will increase by 5.1% in the RCP45 but decrease by 30.1% in the RCP85. 
The decline in streamflow in the RCP85 was projected to be particularly 
pronounced in the spring and early summer months. Furthermore, our 
simulations demonstrated a linear decrease in streamflow corresponding 
to increases in forest coverage. If all grasslands are replaced by forests, 
streamflow would decrease by additional 41% and Lake Thunderbird is 
anticipated to experience an average of 8.6 years in the RCP45 and 9.4 
years in the RCP85 during the 20-year period of 2080–2099 with water 
inflow amounts lower than those in the 2011/2012 extreme drought 
event. These findings underscore the severe consequences of forest 
expansion on future water resource availability. Therefore, the formu-
lation of afforestation/reforestation policies in the subhumid region and 
the implementation of WPE management practices necessitate a 
comprehensive evaluation of their long-term impacts on water resources 
sustainability. 
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