Towards a High Resolution Soil Moisture Map of Oklahoma

Jason Patton1, Tyson E. Ochsner1, Andres Patrignani1, Jingnuo Dong1, and Matthew Haffner2

(1) Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK
(2) Department of Geography, Oklahoma State University, Stillwater, OK

References:

This material is based on work supported by the National Science Foundation under Grant No. IIA-1301789 and the Oklahoma Agricultural Experiment Station.

Introduction

Large-scale (> 1 km²) estimates of soil moisture have often been validated using data from long-term networks with sparse soil moisture measurements and/or using data from short-term experiments with dense measurements. The Oklahoma Mesonet is a network of ~120 automated weather and soil monitoring stations. The Mesonet covers Oklahoma at an average spacing of one station per 30 km and has been maintained for >20 years. Statistical methods may be used to combine Mesonet data with other sources of data (e.g. soil properties, radar precipitation estimates) to create high resolution (800 m) maps of soil moisture for the state of Oklahoma. With validation, these maps may be used to validate other, large scale soil moisture estimates, e.g. from the SMAP and SMOS satellites.

Method

1. Define a grid
2. Get soil texture data1 at each grid point (x, y) and Mesonet station (i with grid position xᵢ, yᵢ)
3. Get accumulated precipitation data2 at each grid point and Mesonet station
4. Get soil moisture data3 at each Mesonet station
5. Regress soil moisture (θᵢ) against xᵢ, yᵢ, sand content (Sᵢ), and 5- and 30-day accumulated precipitation (Pᵢ)
6. Calculate residuals (eᵢ)
7. Krige the residual soil moisture values
8. Estimate soil moisture at each grid point by combining kriged residual values with soil moisture estimates from the regression model

\[
\theta_{(x,y)} = \hat{\theta}(x,y) + q(x,y)\hat{\beta}
\]

Results

Figure 1. (a) and (b) are the resulting soil moisture maps from our current method, valid at 0600 UTC (midnight CST) on the day following October 22 and 23, 2015, respectively. (c) maps the precipitation that occurred between these periods, leading to the large 1-day change in predicted soil moisture values (d) in southern Oklahoma.

Figure 2. The Oklahoma Mesonet itself provides maps of soil moisture (a); the interpolation is done using the same method the Mesonet uses for atmospheric variables (Barnes objective analysis). Early attempts at improving the accuracy of interpolated soil moisture used ordinary kriging (b), but this method produced similar patterns as the Barnes method, perhaps with even stronger “bulls-eyes” around particularly wet/dry sites. Our current method’s results, plotted for the same day (November 10, 2015) as (a) and (b), are shown in (c).

Current Issues

• No validation (yet!)
• Poor nugget estimation in variograms ➔ “bulls-eye” maps
• Precipitation handling
• Ignoring influence of land use/land cover, probably only valid for non-irrigated grasslands

Next Steps

• Compare with COSMOS rover estimates
• Include information/models for different land cover types (e.g. wheat, forest)
• Evaluate other regression, variogram modeling, and kriging techniques
• Build interactive web application to enable public and research use

jason.c.patton@okstate.edu – maps at http://soilmoisture.okstate.edu/