

ABSTRACT

• To predict the unknown values of temperature and precipitation in our survey respondents' locations, we use the observation data from Mesonet stations to create the interpolated estimates. There are several spatial interpolation methods offered in ArcGIS Desktop 10.2, including Inverse Distance Weighting (IDW), Global Polynomial Interpolation (GPI), Local Polynomial Interpolation (LPI), Simple Kriging (SK) and Ordinary Kriging (OK). The cross-validation technique is applied to assess the accuracy of these methods.

DATA

- 117 Mesonet Stations' Locations (Figure 1)
- The observation data of winter temperature and precipitation from 2011 to 2014

Figure 1 – Geographic locations of Mesonet stations

METHOD

- We use "Cross Validation" to evaluate and compare the performance of different spatial interpolation methods and identify the most accurate interpolated outputs by means of the difference of the predicted values to the observed values.
- □ Mean Error—the averaged difference between the measured and the predicted values.

$$ME = \frac{\sum_{i=1}^{n} [\hat{Z}(s_i) - Z(s_i)]}{\sum_{i=1}^{n} [\hat{Z}(s_i) - Z(s_i)]}$$

□ Root Mean Square Error—this indicates how closely your model predicts the measured values.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} [\hat{Z}(s_i) - Z(s_i)]^2}{n}}$$

Contact Chih-Yu Lai – <u>cylai@ou.edu</u>

Graduate Research Assistant, University of Oklahoma

Spatial interpolation of winter temperature and precipitation in Oklahoma

Chih-Yu Lai

Center for Risk and Crisis Management, University of Oklahoma

Spatial	Tempe	erature	Precipitation		
Interpolation	ME	RMSE	ME	RMSE	
IDW	0.04502	0.70382	-0.01238	0.55086	
IDW Weighted by Elevation	0.02181	0.71342	-0.02431	0.55080	
GPI	0.00051	0.65735	-0.00884	1.04113	
GPI Weighted by Elevation	0.00580	0.66151	-0.08607	1.14810	
LPI	-0.04360	0.59833	0.01078	0.52372	
LPI Weighted by Elevation	-0.01054	0.60915	0.02256	0.53431	
SK With Exponential Kernel	0.02937	0.59557	0.01137	0.56947	
SK With Polynomial5 Kernel	0.02547	0.56788	0.01086	0.55111	
SK With Gaussian Kernel	0.02192	0.56631	0.00203	0.53166	
OK With Exponential Kernel	-0.00831	0.57625	0.01010	0.54726	
OK With Polynomial5 Kernel	-0.01228	0.57531	0.00904	0.54333	
OK With Gaussian Kernel	-0.01170	0.57585	-0.00535	0.53568	

COMPARISON

Figure 2 – Spatial interpolation of winter temperature

۲	۲			•			٠		
Local Polynomial Interpolation				•					
Prediction Map					<u> </u>		•		
[MesonetSit	esPSW1234].[PREP_\	W1234]			•				
Filled Contours	5								
0.25 – 1.111						•			
1.111 – 1.97	2					•	(•)		
1.972 – 2.83	33			•					
2.833 – 3.69	94					•			
3.694 – 4.55	55								
4.555 – 5.42	16 N	1			•			• }	
5.416 – 6.27	77								
6.277 – 7.13	38	/					•		
7.138 – 7.99	99 0 12 5 25 50	75	100						
7.999 – 8.86	6 1 2.020 50		Miles						

Figure 3 – Spatial interpolation of winter precipitation

RESULTS

Spatial Interpolation IDW

IDW Weighted by Elevation

GPI

GPI Weighted by Elevation

LPI

LPI Weighted by Elevation

SK With Exponential Kernel

SK With Polynomial₅ Kernel

SK With Gaussian Kernel

OK With Exponential Kernel

OK With Polynomial₅ Kernel

OK With Gaussian Kernel

CONCLUSION

- interpolation of precipitation.

Acknowledgments

Precipitation

• The smaller the RMSE value is, the better the model. "Simple Kriging with Gaussian Kernel" is good for the spatial interpolation of winter temperature.

• "Local Polynomial Interpolation" is good for the spatial