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1. Materials and Methods

The knowledge of soil moisture dynamics is crucial for understanding and
modeling hydrological processes, like precipitation, infiltration, evapotran-
spiration, runoff, and drainage Dingman (1994), which are affected by soil
property, relative humidity, change in air temperature and other factors. Also
we suspect spatial pattern exists. So we use spatial-temporal methods to
model the soil moisture and to find spatial- temporal relations between soil
moisture and climate variables. We use the hourly-accumulations soil mois-
ture and climate data of Oklahoma Mesonet (https://www.mesonet.org/).
Considering the completeness of the data, we use the data of 2010 from
106 Mesonet stations.

2. The Model

Our model is still under investigation. For preliminary study we propose a
spatial-temporal model Wikle & Hooten (2010) to model the data. The soil
moisture is considered as a one-step Markov Chain over time at each site.
Observation Equation:

Z(s; t) = Y (s, t) + εy,s,t εy,s,t ∼ N(0,Σ0)

Process Equation:

Y (s, t) = Y (s, t− 1) +X(s, t)β +Z(s)γ + φ(s, t) + e(s, t)

where

e(s, t) ∼ N(0,Σs ⊗ Σθ)

Here Z(s, t) is the observation vector corresponding to site s at time t;
Y(s, t) is the state vector representing the hidden process. X(s, t) cor-
responds to climate process both in time and space and Z(s) is the soil
property which is pure spatial process. (α, β) are regression coefficients.
For now we assume normality in our error terms. Hence we attempt to
decompose the process into a pure spatial process and a possible spatial-
temporal process. Also we assume the error terms are constant over time, so
we can write the error term for process equation as the Kronecker product
of the covariance among variables and the variogram matrix. Also

φ(s, t) = Mφ(s, t− 1) + V (s)

where φ(s, t) is a latent spatial-temporal process with covariance in Matern
Gaussian form

V (s) ∼ GP (0,Q)

A Markov Chain Monte-Carlo (MCMC) algorithm, Kalman Forward-
filtering, backward-smoothing method West & Harrison (1997) will be ap-
plied to obtain the full conditional posterior distribution of the state vector
Y(s, t) and all unknown parameters Θ.

3. Mesonet: MARE

These pictures give a general idea of the shape of some variables and possible
relations between them.

Figure 1: Hourly data of soil moisture and rain fall

Figure 2: Hourly data of relative humidity and air temperature

Figure 3: Soil moisture of 2010 from 106 stations

We also would like to introduce our previous work. We fit time
series models using soil moisture data from COSMOS and pre-
cipitation data from Mesonet for two COSMOS sites. The pic-
ture below shows the model actually smoothed the raw data. We
also estimated the parameters using Metroplis-Hastings algorithm.

Figure 4: Estimates vs Raw data of Feb.2012

The blue dash line represents the raw data. The red line represents the
estimates by the model.
We also use this example to illustrate the convergence of the estimates of
hyper-parameters.

Figure 5: Check MCMC convergence

4. Goal

We focus on the state-level soil moisture data from Mesonet. There are
two aims in our analyses:
(1). Understanding temporal patterns of soil moisture in both a short term
period and a long term period. We expect to establish a descriptive statis-
tical model for changes over time;
(2). Understanding spatial variations of soil moisture at the state-level. We
are going to use variables, such as climate and soil property, which may also
vary in space and time, to explain the variation of soil moisture.
The goal is to predict soil moisture at those locations where data are not
available in the entire state, i.e. a statistical mapping. Combining the
knowledge of (1) and (2) will help us to establish a predictive model for
mappings over time.
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