Zeng-Yu Wang Associate Professor Forage Improvement Division The Samuel Roberts Noble Foundation

Professional Preparation

Hebei Agricultural University, China Agronomy B.S., 1985 Hebei Agricultural University, China Agronomy M.S., 1987 China Agricultural University Agronomy Ph.D., 1990

Swiss Federal Institute of Technology Biotechnology Post-doctoral Fellow, 1991-1995

Appointments

- Associate Professor, Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 2004 present
- Assistant Professor, Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 1998 – 2003
- Research Scientist, Plant Biotechnology Center, Agriculture Victoria, Melbourne, Australia, 1995–1998

Selected Publications

- Hisano H, Nandakumar R and Wang Z-Y (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cellular and Developmental Biology-Plant 45:306-313.
- Ma X, Wright E, Ge Y, Bell J, Xi Y, Bouton JH and Wang Z-Y (2009) Improving phosphorus acquisition of white clover (*Trifolium repens* L.) by transgenic expression of plant-derived phytase and acid phosphatase genes. Plant Science 176:479-488.
- Mian R, Zhang Y, Wang Z-Y, Zhang J, Cheng X, Chen L, Chekhovskiy K, Dai X, Mao C, Cheung F, Zhao X, He J, Scott A, Town C and May G (2008) Analysis of tall fescue ESTs representing different abiotic stresses, tissue types and developmental stages. BMC Plant Biology 2008, 8:27 doi:10.1186/1471-2229-8-27.
- Zhang J-Y, Brockling C., Sumner L, and Wang Z-Y (2007) Heterologous expression of two *Medicago truncatula* putative ERF transcription factor genes, *WXP1* and *WXP2*, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Molecular Biology 64: 265-278.
- Ge Y, Cheng X, Hopkins A and Wang Z-Y (2007) Generation of transgenic *Lolium temulentum* plants by *Agrobacterium tumefaciens*-mediated transformation. Plant Cell Reports 26:783-789.
- Crane C, Wright E, Dixon RA and Wang Z-Y (2006) Transgenic *Medicago truncatula* plants obtained from *Agrobacterium tumefaciens*-transformed roots and *Agrobacterium rhizogenes*-transformed hairy roots. Planta 223:1344-1354.
- Xiao K, Liu J, Dewbre G, Harrison M and Wang Z-Y (2006) Isolation and characterization of root-specific phosphate transporter promoters from *Medicago truncatula*. Plant Biology 8:439-449.

- Ge Y, Norton T and Wang Z-Y (2006) Transgenic zoysiagrass (*Zoysia japonica*) plants obtained by *Agrobacterium*-mediated transformation. Plant Cell Reports 25: 792-798.
- Wang Z-Y and Ge Y (2006) Recent advances in genetic transformation of forage and turf grasses. In Vitro Cellular & Developmental Biology Plant 42: 1-18.
- Xiao K, Katagi H, Harrison M and Wang Z-Y (2006) Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from *M. truncatula*. Plant Science 170: 191-202.
- Cheng X-F and Wang Z-Y (2005) Overexpression of *COL9*, a *CONSTANS-LIKE* gene, delays flowering by reducing *CO* and *FT* expression in *Arabidopsis thaliana*. Plant Journal 43: 758-768.
- Zhang J-Y, Broeckling CD, Blancaflor EB, Sledge M, Sumner LW and Wang Z-Y (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant Journal 42: 689-707.
- Xiao K, Harrison M and Wang Z-Y (2005) Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222: 27-36.
- Wang Z-Y and Ge Y (2005) Rapid and efficient production of transgenic bermudagrass and creeping bentgrass bypassing the callus formation phase. Functional Plant Biology 32: 769-776.
- Xiao K, Zhang C, Harrison M and Wang Z-Y (2005) Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Molecular Breeding 15: 221-231.
- Wang Z-Y and Ge Y (2005) *Agrobacterium*-mediated high efficiency transformation of tall fescue (*Festuca arundinacea* Schreb.). J. Plant Physiol. 162: 103-113.
- Mian R, Saha M, Hopkins A and Wang Z-Y (2005) Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome 48: 637-647.
- Wang Z-Y, Ge Y, Mian R and Baker J (2005) Development of highly tissue culture responsive lines of *Lolium temulentum* by anther culture. Plant Science 168: 203-211.
- Wang Z-Y, Ge YX, Scott M and Spangenberg G (2005) Viability and longevity of pollen from transgenic and non-transgenic tall fescue (*Festuca arundinacea*) (*Poaceae*) plants. American Journal of Botany 91:523-530.
- Chen L, Auh C, Dowling P, Bell J, Lehmann D and Wang Z-Y (2004) Transgenic down-regulation of caffeic acid *O*-methyltransferase (COMT) led to improved digestibility in tall fescue (*Festuca arundinacea* Schreb.). Functional Plant Biology 31:235-245.
- Wang Z-Y, Bell J and Lehmann D (2004) Transgenic Russian wildrye (*Psathyrostachys juncea*) plants obtained by biolistic transformation of embryogenic suspension cells. Plant Cell Reports 22:903-909.
- Wang Z-Y, Lawrence R, Hopkins A, Bell J and Scott M (2004) Pollen-mediated transgene flow in the wind-pollinated grass species tall fescue (*Festuca arundinacea* Schreb.). Molecular Breeding 14:47-60.