

BioEnergy Science Center: An Integrated Strategy to Understand Biomass Recalcitrance

Presented to the Oklahoma EPSCoR Annual State Conference

Brian Davison

Chief Scientist, Systems Biology and Biotechnology BioEnergy Science Center

April 29, 2010

www.bioenergycenter.org

BioEnergy Science Center

An Integrated Strategy to Understand **Biomass Recalcitrance**

BESC: A multi-institutional DOE-funded center

Samuel Roberts Noble Foundation National Renewable Energy Laboratory Brookhaven National Laboratory University of California–Riverside **Cornell University** Washington State University University of Minnesota North Carolina State University Virginia Polytechnic Institute **322 People**

Oak Ridge National Laboratory University of Georgia University of Tennessee **Dartmouth College** Georgia Institute of Technology West Virginia University ArborGen, LLC Ceres, Incorporated Mascoma Corporation Verenium Corporation

University of California–Los Angeles

in 20 Institutions

BESC is organized to lead interacting team across key areas

April 2010

Access to the sugars in lignocellulosic biomass is the current critical barrier

A two-pronged approach to increase the accessibility of biomass sugars

Both utilize rapid screening for relevant traits followed by detailed analysis of selected samples

Strategy Part 1: Identify, Understand and Manipulate the Plant Cell Wall Genes Responsible for Recalcitrance

Genetic block in lignin biosynthesis in switchgrass increases ethanol yields

Phenylalanine -----

PAL

Mining Genetic Variation in Switchgrass

Create diverse population by cross "lowland" SG AP-13 and "upland" SG VS-16 into 385 pseudo F1 clones

Pseudo F₁ population of 385 genotypes

Clones ready for field planting

Sugar Release Assay Analytical Pyrolysis

Create Genetic Marker Map to identify allelic variation

> Identify Marker Trait Association

Cell Wall Biosynthesis Database

Mining variation to identify key genes in biomass composition and sugar release

Collected ~1300 samples for *Populus* association and activation-tag study

High-throughput screening pipeline

- Create genetic marker map to identify allelic variation
- Identify marker trait association

Sugar release assay

Cell wall biosynthesis database

Establish common gardens for association and activation-tag populations with thousands of plants

Strategy, part 2: Measure, understand, and model biomass recalcitrance

High-throughput characterization pipeline for the recalcitrance phenotype

Screening thousands of samples

Composition analytical pyrolysis, IR, confirmed by wet chemistry

Enzyme digestibility sugar release with enzyme cocktail

Detailed chemical and structural analyses of specific samples

High-throughput screening to analyze natural *Populus* trees

- Screening of 1200 natural Populus trees
- Hot water as pretreatment only
- Sugar release varies from 25% to >90% of theoretical value

Environmental vs genetic?

Detailed analysis of specific samples inform cell-wall chemistry and structure

CARS (Coherent Anti-Stokes Raman Scattering) Imaging of Lignin in Interfascicular Fiber Cell Walls in Alfalfa

CML: Compound middle lamellae; SW: secondary cell walls

S-Y Ding (NREL) and X. S. Xie (Harvard) tools under BER imaging grant; sample analysis under BESC, 2010 Mutant alfalfa from Noble Foundation

CBP organism development yeast

ASCOMA

Enzymatic and microbial hydrolysis A fundamentally different relationship between microbes and cellulose

Enzymatic hydrolysis (classical approach)

- Hydrolysis mediated by CE complexes
- Enzymes (several) both bound and free
- Cells may or may not be present

Yeast, enzymes with biomass (Dumitrache and Wolfaardt)

Microbial hydrolysis (CBP)

- Hydrolysis mediated mainly by CEM complexes
- Enzymes both bound and free
- Cells both bound and free

C. thermocellum on poplar (Morrell-Falvey and Raman, ORNL)

3D electron tomography of *C. cellulolyticum*

Tomogram slices and surface rendered segmentation of bacterial cells and tethered cellulosomes. C–E: Serial slices taken every ~8 nm through tethered cellulosomes. These tethers are seen at one end of most polycellulosmes found near the bacterial cell surface and are ~5 nm in diameter and up to 50 nm in length.

Cellulosome of C. thermocellum

Understanding cellulosome NERGY structure/function 48 48 10 **5B** Dockerin Assembled 7 • domain enzymes CBM Cohesin 48 Ready for computer • 9B simulations Fibronectins 9A CBM Catalytic Domains C. thermocellum CbhA CbhA CBM4 IG GH9 FN3₁ FN3₂ CBM3b D CbhA is a critical enzyme CBM3b Dockerin lg-GH9 CBM4 Fn3₁–Fn3₂ Bayer et al., 2009 PDB **NREL 2009** PDB NREL 2009 (unpublished) New structures solved at NREL

BioEnergy Science Center

U.S. DEPARTMENT OF

U.S. DEPARTMENT OF Cellulosome Changes in *C. thermocellum* on Different **Biomass Substrates**

-2.0

- Pretreated Switchgrass
- Cellobiose
- Amorphous Cellulose
- Avicel ¹⁴N
- Avicel ¹⁵N
- Avicel-Pectin
- Avicel-Xylan
- Avicel-Pectin-Xylan

- C. thermocellum alters its cellulosome catalytic composition depending upon the growth substrate
- We identified and experimentally verified 16 "new" cellulosome components
- Insights aid in constructing designer cellulosomes with tailored enzyme composition for industrial ethanol production

Citation: "Raman B, et al. (2009) Impact of Pretreated Switchgrass and Biomass Carbohydrates on Clostridium thermocellum ATCC 27405 Cellulosome Composition: A Quantitative Proteomic Analysis. PLoS ONE 4(4): e5271. doi:10.1371/journal.pone.0005271"

Thermophilic Cellulose-Degrading Microbe Degrades Plant Biomass Without Pretreatment

- Caldicellulosiruptor bescii (formerly Anaerocellum thermophilum)
- The most thermophilic cellulolytic organism known (Tmax 90°C)
- Grows on unprocessed plant biomass (switchgrass, poplar and peanut shells) and spent insoluble material (after primary growth)
 - >60% switchgrass biomass solubilized by three successive cultures
 - glucose:xylose:lignin ratio comparable in unspent and spent biomass
- Genome contains > 100 CBH-metabolizing (CAZy) genes, many in clusters
 - candidate genes to mediate cell-biomass adhesion identified
- Growth on cellulose and switchgrass accomplished at the 600-liter scale for
 - characterization of extracellular proteins (> 8 grams)
 - transcriptomics and proteomics analyses underway of C.
 bescii grown on cellulose, xylan, switchgrass and poplar
- Significance: conversion of direct unprocessed biomass to biofuel may be possible

Source: Adams (UGa): Yang (2009), Kataeva (2009) Yang (2010)

22

ENERGY

Biodiversity Access for New Biocatalysts

- State-of-the-art cultivation techniques to isolate novel hightemperature microbes with powerful lignocellulolytic enzymes
 - Collect samples from thermal biotopes
 - Establish primary enrichment cultures at relevant temperatures and conditions

Sampling at Yellowstone National Park, October 2007 and July 2008

High-throughput Isolation of Cellulolytic Extreme Thermophiles Using Flow Cytometry

Complex Enrichment

- Establish primary enrichments from environmental samples on biomass.
- 2. Screen for growth and hydrolysis of pretreated biomass.

Single Cell Isolation

- 3. A single cell is deposited by Flow Cytometry in a culture well containing pretreated biomass.
- 4. Multi-well plates are incubated at 70-80° C in the absence of oxygen.

High-throughput Screening

- 5. Plates are screened for growth and biomass hydrolysis.
- High-throughput screening allows thousands of isolates to be evaluated with natural substrates.

BioEnergy Science Center

New Isolates Show Enhanced Biomass Hydrolysis Rates

Elkins et al. - ORNL

BioEnergy Science Center

Preliminary results show visual disappearance of pretreated switchgrass solids during growth at 78°C relative to a benchmark organism

OB#47 submitted as Caldicellulosiruptor sp.

BESC Knowledge Base

BioEnergy Science Center

KB Mission

ontologies

recalcitrance. etc.

Analyze and present integrated data and results in the context of cell and organism systems biology

Serves as a biological discovery / data mining platform for larger community

BESC will revolutionize how biomass is processed and converted

Industrial partners facilitate strategic commercialization

Translating discoveries to the scientific community

ENERGY

- 159 scientific publications
 - 33% of publications include external collaborators at non-BESC Institutions
- BESC publications have already been cited 262 times in peer-reviewed journals
- Several publications in top-tier journals
 - Nature Biotechnology, 2008, Lynd et al., How biotech can transform biofuels
 - PNAS, 2008, Shaw et al., Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield
 - Nature Nanotechnology, 2010, Tetard et al., New modes of subsurface atomic force microscopy through nanomechanical coupling

17 inventions disclosed (under evaluation by BESC Commercialization Council)

Influencing next generation of scientists ENERGY

- National Geographic, The Jason Project, filmed and generated an educational module on bioenergy with BESC researchers
 - This module is available from www.jason.org
- Created an interactive biofuels outreach lesson for students in Grades 3-8
 - Piloted more than 220 lessons which reached over 6,000 students
 - Partnered with the Creative Discovery Museum
 - Available on www.bioenergycenter.org
- Piloted ten Biofuels Family Science Nights with an average attendance of 250 people each

BESC model for multidisciplinary and integrated research program

- It is possible to be highly integrated without being co-located
- A strong management team with centralized funding source is needed
- Allowing scientists to participate from home institutions enables rapid assembly of a team with a much higher proportion of the most accomplished experts
- Capital costs are lowered by utilizing existing infrastructure/equipment available at partner facilities
- A coherent vision, goal, and defined milestones are critical

SCIENCE RETREAT DECEMBER 2008

SCIENCE RETREAT JUNE 2009

BESC is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science

Bio-Energy and Bioproducts at ORNL

