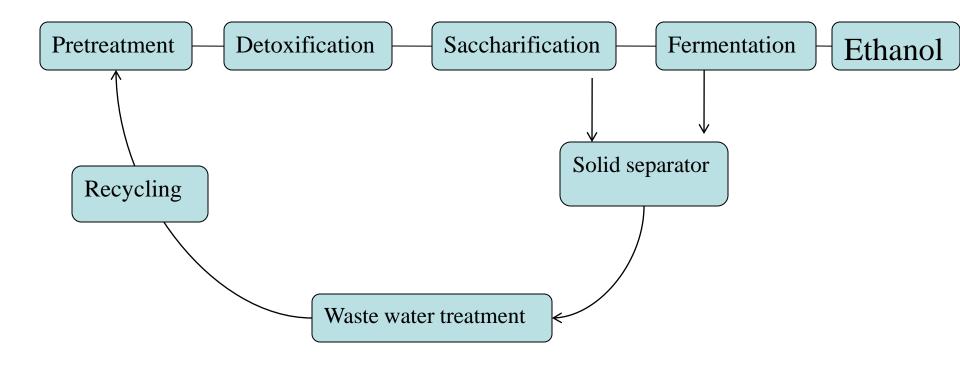

The forgotten fungi: Phylogenetic diversity, lignocellulolytic capabilities, and genomic analysis of the Neocallimastigomycota

Mostafa Elshahed


Assistant Professor, Department of Microbiology and Molecular Genetics Oklahoma State University

Lignocellulosic biomass conversion to ethanol: two strategies

I. Indirect fermentation

II. Direct fermentation

I. Direct fermentation

> Challenges: Cost.

Could be overcome by:

Overcoming recalcitrance

o Lignocellulosic biomass

o Fungal strains

o Saccharification enzymes

Overcoming complexities (CBP)

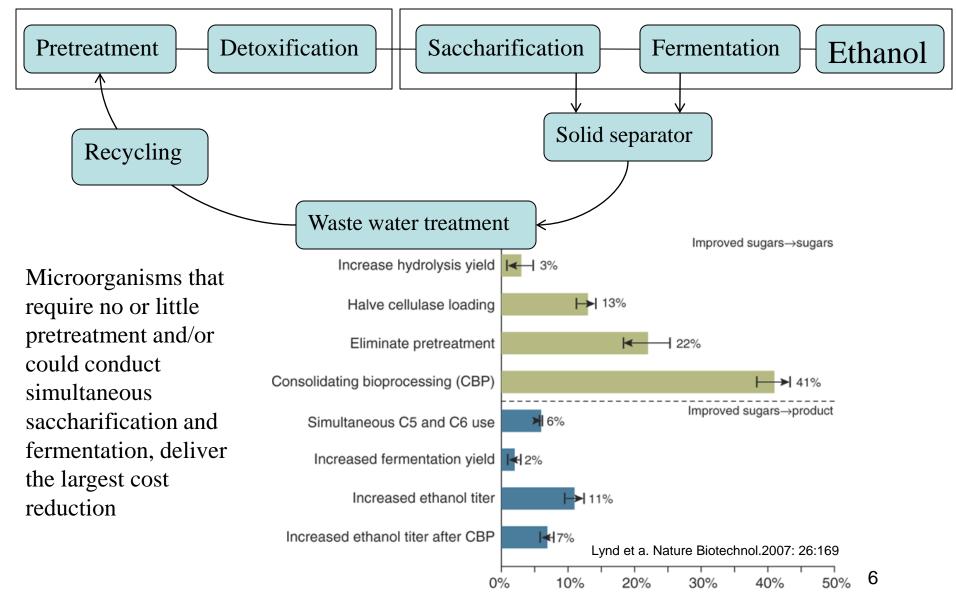
o Simpler pretreatments

- o Simultaneous saccharification and fermentation
- o Simplifying waste treatment

> Advantages

Thigh theoretical yield

Sugar fermentation to ethanol well researched, wealth of knowledge on *S. cerevisiae, E. coli*


Production of longer chain alcohols could be achieved in a high yield

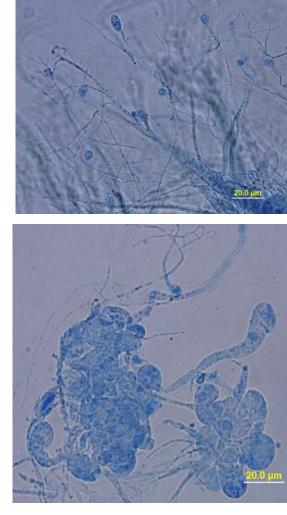
Where would a microbiologist fit in such efforts?

* Bioprospecting and Strain development

- Bioprospecting: Identification, isolation of novel microorganisms and novel enzymes
- Strain development
 - Tirected evolution
 - Genetic manipulation
 - The Cloning and expression, synthetic biology approaches
- ➢ Goal: novel AND better microorganisms, enzymes
- Critical evaluation of *capability* and *potential*
- Clear role in a larger scheme necessary

Bioprospecting and strain development aiming at eliminating pretreatment, consolidating bioprocessing

Processing cost reduction


Nature's way in breaking lignocellulosic biomass

- ≻ Fungi
 - Invasive, produce multiple extracellular enzymes, expose lignocellulosic materials to microbes
 - Primary colonizers and degraders of dead plant biomass in soil.
 - ^{Care} Under aerobic conditions, biomass is completely degraded to CO₂ (Aerobic fungi)
 - Aerobic fungal enzymes are used for saccharification
- S. Cerevisiae / fermentative bacteria are used for sugar fermentation
- CBP efforts with engineered Enteric bacteria, C. thermocellum are underway

Anaerobic fungi combine the invasiveness of fungi with the fermentative capabilities of yeast/ anaerobic bacteria

- Discovered in sheep in 1975*
- Present in the gut, alimentary tract of many ruminants, herbivores
- Initial colonizers of *fresh* plant materials in cow rumen
- Separate fungal phylum (Neocallimastigomycota)
- Six Genera, 20 species currently described.

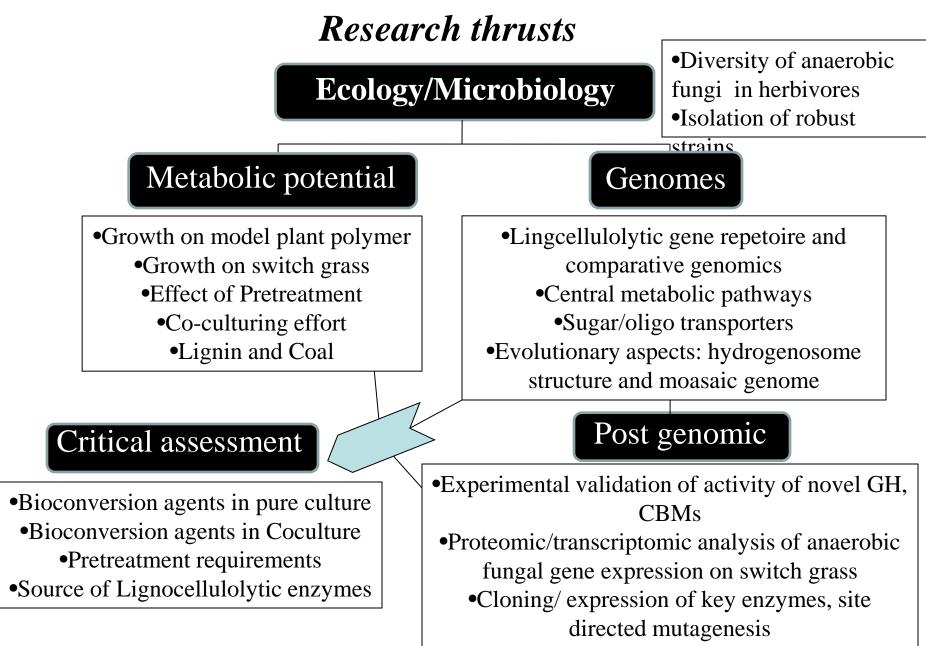
*Orpin GC: Studies on the rumen flagellate Neocallymastix frontalis J. Gen. Microbiol. 91:215-218

Evaluation of the role of anaerobic fungi in biofuel research

- Theoretically, anaerobic fungi are ideal candidates for use in direct fermentation schemes
 - The Highly invasive
 - ☞ No or minimum pretreatment necessary
 - The Capable of metabolizing cellulose, hemicellulose, pectin
 - Capable of metabolizing C6, C5 sugars, ethanol is one of the products
- "The anaerobic fungi also attract attention as a new group of cellulase- and hemicellulase-producing microorganisms. The challenge of adapting this group of microorganisms in biotechnology will undoubtedly be accepted by scientists in the near future". Tom Bauchop. Biosystems 1989 23:53-64

Extensive research, Critical evaluation needed

Information on anaerobic fungi is sparse after 35 years of their discovery


- Few interested research groups (Only a handful of laboratories are (semi)-active around the world).
- ➢ No genome, partial genome sequenced, few genes known
- ➢ No genetic system available
- Researched mainly by animal scientists, ecologists, evolutionary biologists, and protein chemists
- Few, if any, sustained biofuel-related research had been conducted

Research goals

- 1. Gauge the global diversity of anaerobic fungi
- 2. Isolate multiple, diverse isolates
- 3. Evaluate abilities to grow and metabolize switch grass
- 4. Identify enzyme activities, quantify products
- 5. Genome sequencing, cloning and expression studies
- 6. Formulate an ideal role for these fungi in direct fermentation approaches
- 7. Critical evaluation of their strengths and weaknesses)
- 8. Commercialization

- Bioprospecting

Strain development

I.A. Ecology of the Neocallimastigomycota

- Six genera, 20 species currently described.
- Presence documented in at least 50 ruminant and non-ruminant herbivorous mammals.
- Prevalence identified through isolation of a single/few strains or through microscopic observations based on phenotypic characters.
 - These culture-based and microscopic studies have provided many valuable insights.
- Molecular methods utilizing the internal transcribed spacer regions:
 - Identify isolates
 - Identify anaerobic fungal community composition using fingerprinting techniques (DGGE, T-RFLP, ARISA, size-based selections (Spreadex), HMM-based typing).

However, little is known regarding:

- 1. Phylogenetic Diversity within the Neocallimastigomycota.
- 2. Complexity of the Anaerobic Fungal Community within a Single or Multiple Hosts.
- 3. Influence of Various Ecological and Environmental Factors on Anaerobic Fungal Diversity.

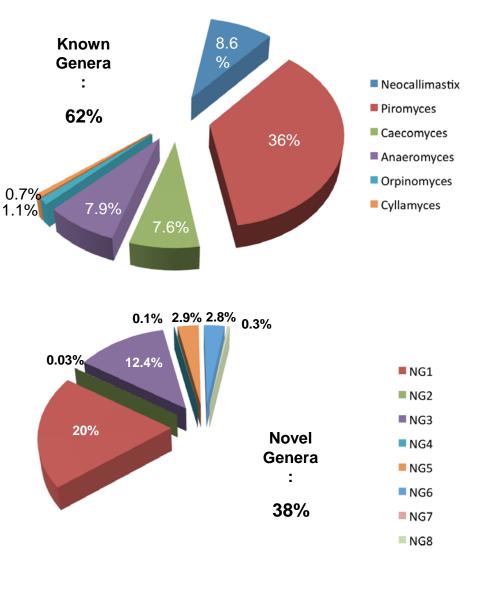
Diversity of the Neocallimastigomycota in Herbivores

- A high-throughput pyrosequencing approach was used to gauge the diversity of anaerobic fungi in 33 herbivorous mammals and reptiles.
- PCR products using primers specific for the ribosomal ITS1 region with additional barcodes and adapters were used for the sequencing.
 - Total sequences: 267,287
 - Avg. # of seqs per animal: 8100
 - Genbank accession numbers: GQ576478-GQ843764
- Cutoff values of 5% and 17% for species and genera.

Hindgut fermenters	Foregut fermenters (nonruminants)	Foregut fermenters (ruminants)		
Equidae	Macropodidae	Giraffidae	Bovidae	
Horse (3)	White-fronted wallaby	Rothschild's giraffe	Bontebok	
Miniature donkey	Red kangaroo	Okapi	Grant's gazelle	
Somali wild ass		Cervidae	Southern gerenuk	
Grants zebra		Indo-Chinese sika deer	American bison	
Grevy's zebra (2)		Indian hog deer	Greater kudu	
Rhinocerotidae	Foregut fermenters (pseudoruminan ts)	American elk	Goral	
Black rhinoceros	Hippopotamidae	Pere David's deer	Sable antelope	
	Pygmy hippopotamus	Western tufted deer	Nile lechwe	
Reptilian			Domestic cattle	
Iguanidae	Camelidae	Antilocapridae	Domestic sheep	
Green iguana	Llama	Pronghorn	Domestic goat	

Phylogenetic diversity of the Neocallimastigomycota

•The 6-recognized AF genera constituted only 61.75% of the sequences generated in this study.


Piromyces: 96,122
Neocallimastix, Caecomyces and Anaeromyces: each ~21,500
Orpinomyces and Cyllamyces: <3,000

•Remaining, 38.25% of sequences showed less than 83% similarity to known AF genera sequences and clustered into 8 phylogenetically distinct groups.

•NG1 and NG3 constituted nearly 20% and 12% of the entire dataset, respectively.

•NG2 and NG5 were present in multiple animals (8 and 14, respectively), but typically were present in low abundance in data sets where they were encountered.

•Others e.g. NG4, NG5, NG6, and NG8 had an extremely limited abundance and distribution and abundance, although NG6 constituted all the microbial community in greater Kudu.

Abundance and distribution of anaerobic fungal genera in herbivores

•Abundance and Distribution of Monocentric Genera?

- •*Piromyces* (28)
- •*Neocallimastix* (18)
- •Caecomyces (14)

•Abundance and Distribution of Polycentric Genera?

- •Anaeromyces (26)
- •*Orpinomyces* (8)
- •*Cyllamyces* (2)

•Abundance and Distribution of Novel Groups (NG)?

•NG1 (23) and NG3 (23) •NG2 (8) and NG5 (14) •NG4 (2) and NG6 (5) and NG8(2) •NG7 (1)

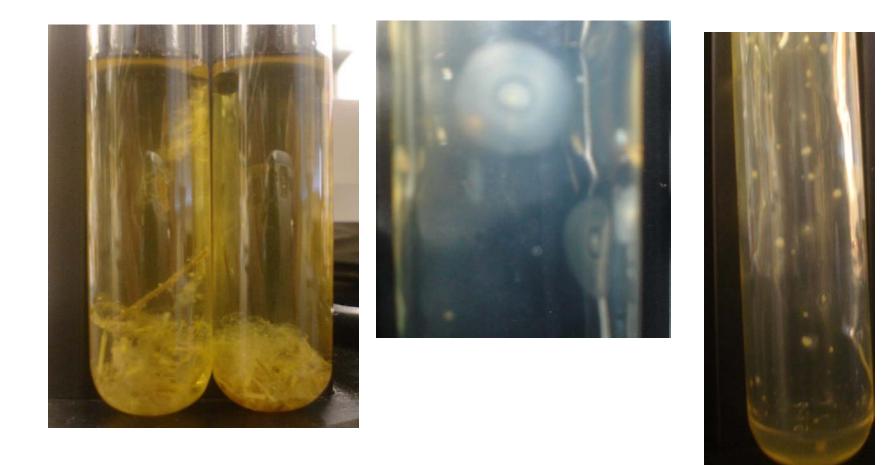
Complexity of anaerobic fungal communities within a single host:

Genus : 7
 Genera :1
 Genera: 6
 Genera: 8
 Genera: 5
 Genera: 5
 Genera: 3 sheep, Cattle, Somali Wild ass
 7 Genera: 3 hosts Bison, Sable Antelope, Nile Lechwe

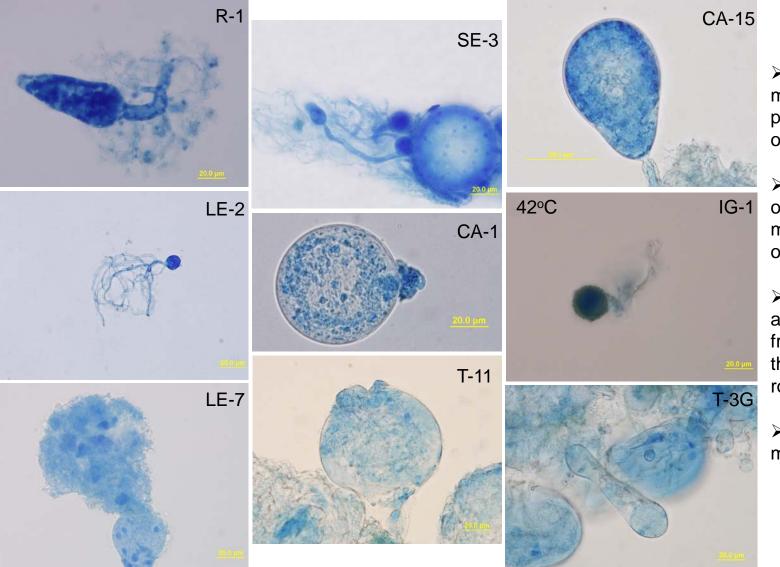
Are there Measureable Factors that Influence the Anaerobic Fungal Diversity in Herbivores

- Animal datasets were grouped using 4 different measureable factors.
- Each animal dataset was ordered according to diversity using three different parameters.
 - No of genera at the 0.05 level (quantitative)
 - Rarefaction curve rankings (ordinal)
 - Diversity rankings using Renyi and Hulbert methods (ordinal).
- Rankings were used to examine the impact of measureable factors on the diversity of anaerobic fungi in the animals sampled.
 - Gut type, ruminant ability, and feed showed low correlation (r=0.20-0.37) with all three diversity ranking schemes, a higher correlation (r=0.56-0.63) was observed when correlating to animal family.

Families	Gut Types	Ruminance	Feed Types
Equidae	Hindgut	Non ruminant	Praire
Rhinocerotidae	Foregut	Pseudo ruminant	Alfalfa
Macropodidae	Other (Iguana)	Ruminant	Prairie and Alfalfa
Hippopotamida e		Other (Iguana)	Fresh/Gree n
Camelidae			
Giraffidae			
Cervidae			
Antilocapridae			
Bovidae			
Iguanidae			
Factor	Div Ordering	Rarefaction	No of genera
Family	0.63	0.60	0.56
Gut Type	0.37	0.30	0.21
Ruminance	0.28	0.37	0.32
Feed Type	0.20	0.29	0.31

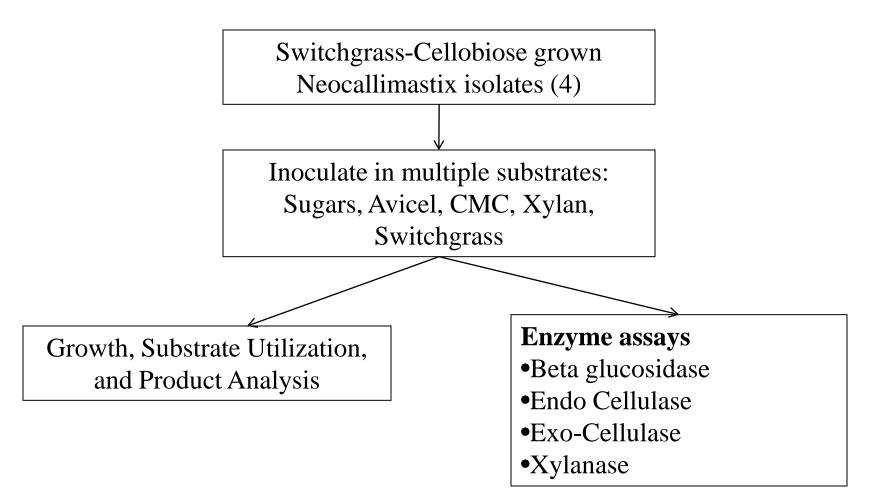

I.B. Isolation of anaerobic fungi on switch grass

- Culture-dependent methods using Hungate-type anaerobic techniques, modified Orpin's medium and roll tubes were used to obtain isolates from fecal samples.
- Identification of the isolates through microscopic examination and sequencing of the ITS spacer region.
- Isolation conducted on samples from hosts with a diverse community (e.g. domestic cattle, sheep, goat), or hosts with a high proportion of novel groups (horse, minature donkey)



Anaerobic fungal isolates on switch grass

Anaerobic fungal isolates


➢Multiple monocentric and polycentric isolates obtained (55)

Senescence occured in the majority of isolates obtained

Neocallimastixassociated isolates from cow feces are the most resilient, robust

Chosen for further metabolic studies

II. Exploring the lignocellulolytic potential of anaerobic gut fungi

Metabolic capabilities, preliminary results

	Anaerobic Fungal Isolate							
	Cattle-1A (C1A)		Cattle-1C (C1C)		Cattle-2A (C2A)		Cattle-2C (C2C)	
	Growth	ΔрН	Growth	∆рН	Growth	ΔрН	Growth	∆рН
Substrate								
Glucose	1	-0.52	1	-0.61	1	-0.54	1	-0.52
Xylose		-0.08		-0.03		-0.01		0.04
Arabinose		-0.06		-0.04		-0.08		-0.02
Mannose	?	-0.11	1	-0.27	?	-0.14	\checkmark	-0.42
Galactose		-0.05		-0.01		-0.03		0.02
Cellobiose	1	-0.68	1	-0.69	\checkmark	-0.66	\checkmark	-0.69
Avicel	1	-0.24	1	-0.17	1	-0.18	1	-0.15
CMC	?	-0.16		-0.08	?	-0.12		-0.07
Xylan	1	-0.29	1	-0.25	1	-0.24	1	-0.20
Switchgrass	1	-0.69	1	-0.68	1	-0.67	1	-0.68

•All isolates grew well on Switchgrass, Xylan, Avicel, Cellobiose and Glucose.

- •Varying ability of isolates to grow on Mannose and CMC.
- No significant growth of isolates on Xylose, Arabinose or Galactose.

Current effort

•Other substrates: Oligosaccharides, model hemicellulases

- •Fermentation balance/rate measurments
- •Loss of Cellulose, hemi/ pectin/lignin in Switchgrass experiments
- •Optimizatioin of Lignocellulolytic degradation
- •Comparison to other direct fermentation system

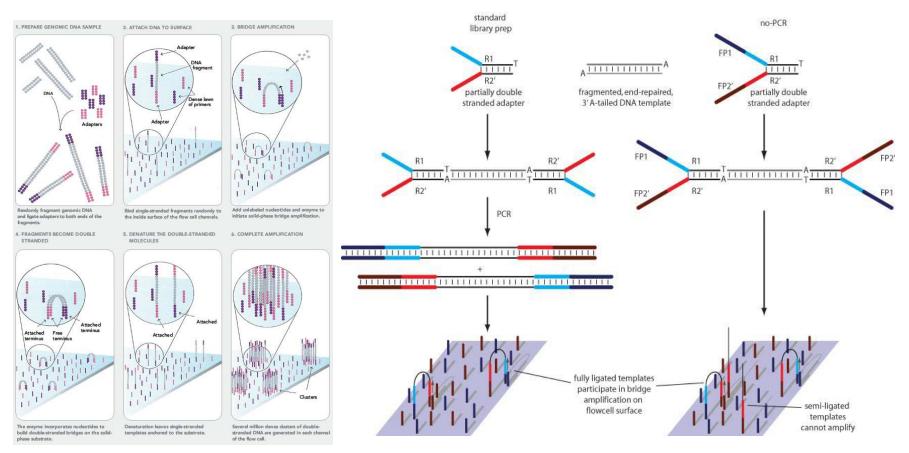
•Further out:

- •Effect of various pretreatment procedures on switchgrass metabolism
- •Co-culturing with *S. Cerevisiae*
- •Lignin metabolism

III. Genome of Neocallimastix sp strain S4

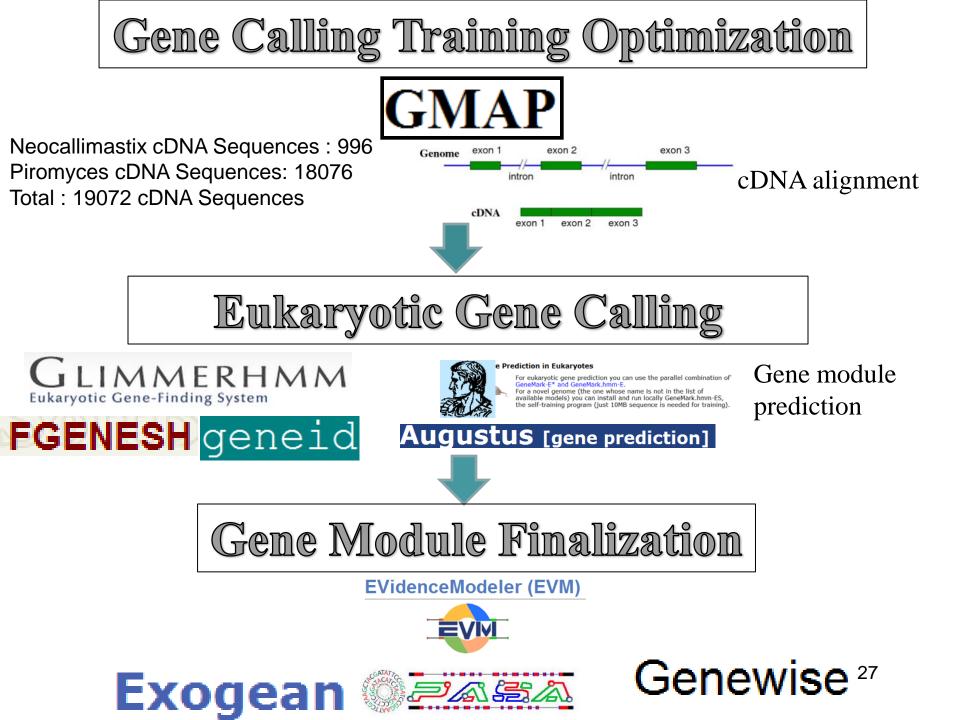
> Neocallimastigomycota genomics

No complete or partial genomes available
Few genomic fragments sequenced
cDNA-based identification and cloning of few lignocellulolytic cellulosomal enzymes

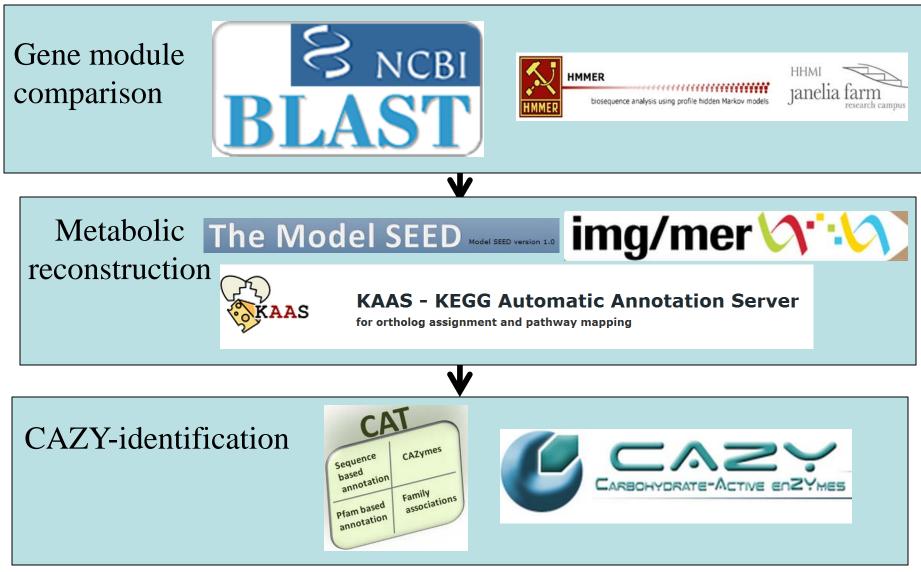

> Challenges

- o Unknown genome size
- Extremely high A+T content
- o Preliminary project abandoned by the DOE-JGI

Potential

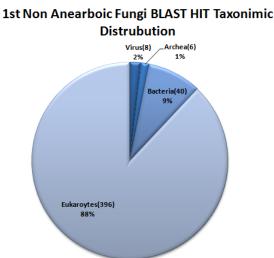

- Novel lignocellulolytic reperetoire
- o Novel secondary metabolites
- o Evolutionary insights

A modified Illumina sequencing approach

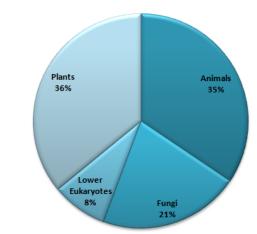


 \succ Illumina's Sequence by synthesis approach allows for sequencing of homopolymer regions with very little bias.

Illumina sequencing was coupled with minimal PCR amplification library generation to get the most even coverage possible on very high AT% anaerobic fungal genomic material.



Genomic Functional Annotation



Genome sequencing:Preliminary results

- Total Length of Assembled Contigs 53,821,617 BP (~ 53.5 Million)
 Largest Assembled Contig: 40,857BP
 N50 = 1932 BP
- •G+C content = 26%
- •Paired end reads, N content = 18.7%

Eukaryotes 1st BLAST Hit Taxonomic Distrubution

No particular affiliation with a specific genome sequenced species

450 400 350 300 250 200 Number of Exons 150 100 50 0 1 Exon 2 Exon 3 Exon 5 Exon 4 Exon 6 Exon

Predicted Exon number for 816 cDNA Alignments

Low number of introns/gene compared to other fungi

Lignocellulolytic gene repertoire

Activity Group	Family	Function	Open Reading Frame
CELLUASES			
	GH45	Endogluconase	1
	GH48	Endogluconase, Cellobiohydrolase	24
	GH5	Cellulase, and many other activities, majority of sequences in database are cell	4
	GH6	Endoguconases, cellobiohydrolases	26
	GH7	Endogluconase, Cellobiohydrolase,	1
	GH9	Endogluconase, Cellobiohydrolase, Beta Glucosidase	1
HEMI CELLUASES			
	GH10	Xylanases	16
	GH11	Xylanases	35
	GH26	Xylanase, Mannanase	24
	GH43	Xylanase, arabifuranosidase, galactase, xylocidase	16
DLIGOSACCRIDE DEGRADATION			
	GH1	Diverse, majoity belonging to beta glucosidase beta galactosidae	17
	GH2	Beta galactosidase, B mannosidase, beta glucuronosidase, but not beta glucosi	7
	GH3	Mainly Beta Glucosidases	29
	GH4	Maltose 6 phosphate glucosidase, alpha glucosidase, alpha galactosidase	4
	GH31	Alpha glucosidase, alpha xylosidase	26
	GH32	Invertase (Sucrose to fruc and glucose), also acts on other fructose bond, a fru	3
	GH38	Alpha Mannosidae	23
	GH43	Galactase, xylocidase; few Xylanase, arabifuranosidase,	16
	GH57	Amylase, pullulanase, etc	1
	GH92	Apha Mannosidases	1
	GH97	Alpha glucosidase, alpha galactosidase	1
Other Activies			
	GH18	Chitinase, class III, class IV	1
	GH19	Chitinase, class I, II, IV)	2
	GH20	β-hexosaminidase (Breaks down N-acetylglucosamine polymers)	1
	GH25	Lysozyme, hydrolysis Nacetlyglucosamine and N-acetylmuramic acid bonds	1
	GH13	Amylase, pullulanase, etc	5
	GH57	Amylase, pullulanase, etc	1
	GH66	Cycloisomaltooligosaccharide glucanotransferase, dextranase	1
	GH89	a-N-acetylglucosaminidase	1
	GH109	N-acetylgalactosaminidase (not glucose but galactose)	1
	GH115	Xylan a-1,2-glucuronosidase (Hydrolysis of $(1 \rightarrow 2)$ -a-D-(4-O-methyl)glucurono	7
Total	30		297

Other genes of interest

Gene Name	Signifigance	BLAST Realative	e value
Swollen (expansin realtive)	Disrutps Plant Cell Wall, orthologus to plant gene	Swollenin [Aspergillus fumigatus Af293] >gi 66845375 gb EAL85710.1	4.92E-116
Tomatinase	Degradation of plant product anti fungal secondary metobolite	Tomatinase [Fusarium oxysporum f. sp. lycopersici]	1.63E-14
Cellulosome Dockerin	Evidence of Extracellular Cellulosome	Cellulosome protein dockerin type I [Clostridium cellulovorans 743B]	1.66E-65
Polysaccride lyase	Beta-Ellimantion mechanism for polysaccraides	Polysaccharide lyase, putative [Phytophthora infestans T30-4]	1.50E-35
Feruoryl Estrase	Plant Cell Wall Degradation	Feruloyl esterase A [Orpinomyces sp. PC-2]	1.11E-78
Secreted GDSL/acylhydrolase	Complex Polysaccharide Degradation	extracellular GDSL-like lipase/acylhydrolase, putative [Neosartorya fischeri NRRL 181]	1.26E-50
Rhamnosidase	Plant Cell Wall Degradation/Industrial Uses	alfa-L-rhamnosidase [Rhodopirellula baltica 5H 1]	1.63E-119

Current & Future genomic/post genomic efforts

- Second round of Illumina sequencing
- Comparative glycogenomics
- Cellulosomal reconstruction
- > Novel CAZY enzymes, CBMs identification
- > Cloning, expression, enzyme characterization

> Further out:

- •Proteomic/transcriptomic studies
- •Site-directed mutagenesis of selected CAZY enzymes
- •Gene knockout, pathway engineering towards solventogenesis

Acknowledgments

Audra Liggenstoffer

Brian Couger

Noha Youssef

Oklahoma Bioenergy Center