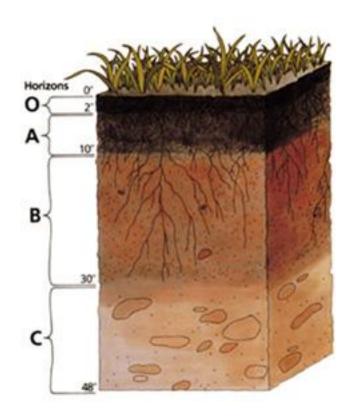



Mostafa Elshahed
Associate Professor
Oklahoma State University

## Soil: an amazing reservoir of biological Diversity

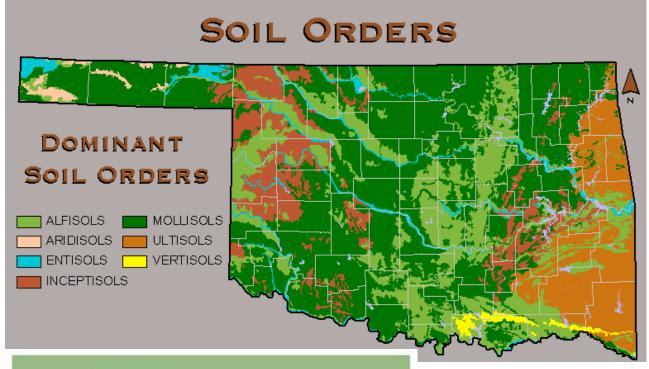


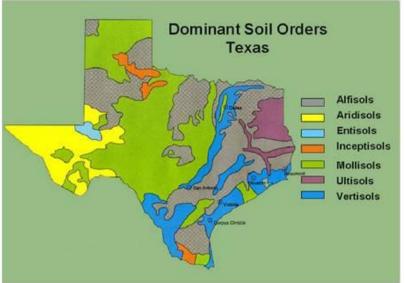

#### Soil

- The unconsolidated layers on the immediate surface of earth, consisting of mineral and organic matters.
- Formed when minerals from rocks and organic matter from plants and animals combine.
- Soil is an extremely important ecosystem:
  - Economically: Agricultural, pasture, flood control, water filtration and purification.
  - Ecological cycling: Carbon sequestration, nitrogen cycling, photosynthesis.
  - Management, processing and detoxification of a variety of wastes, both natural and man-made through the activity of soil microorganisms.

# The diversities of soil types within Oklahoma and beyond

- Parent material, climate, topography, biological factors, and time determines the type of soil.
- According to the USDA soil classification system, soil is classified into Orders, Suborders, Great Groups, Subgroups, Families, and Series.
- Soil is classified into 12 different orders, with 64 suborders.
- Each type of soil often have multiple diagnostic horizons.
- Within similar types of soil, differences in land usage, topography, climate, geographic location, exist.





➤ No two soil samples are exactly the same

➤ No two soil samples have a similar microbial community

Soil is an inexhaustible reservoir of microbial diversity

## Soil orders within the state of Oklahoma





• Within Oklahoma and Texas Panhandle 7 soil orders are present

## **Project Goals**

- I. Exploring and documenting biological diversity within OK soils
  - A. Phylogenetic diversity
  - B. Genomic diversity
  - C. Functional diversity
- II. Elucidation of factors influencing microbial diversity and community structure in soils

New technical improvements in high throughput "-omics" approaches have greatly improved our capabilities to address these questions in highly diverse ecosystems such as soil

Now is the time

## I. Exploring and documenting biological diversity within Oklahoma soils –A. Phylogenetic diversity

#### • Rationale:

- Multiple novel bacterial lineages are present in soil.
- Documenting such diversity in multitude of soils will greatly expand (double, Triple, or even Quadruple) microbial diversity on earth.

#### • *Goal:*

 Complete documentation of soil phylogenetic diversities in Oklahoma Soils (and beyond).

### • Approaches:

- High throughput sequence approaches and analysis to characterize microbial communities in Oklahoma Soils.
- Implementation of novel approaches to access, examine, and document soils rare biosphere.
- Does a shadow biosphere of unidentified, undetected microorganisms exist?

## I. Exploring and documenting biological diversity within Oklahoma soils –B. Genomic diversity

#### •Rationale:

- -A large fraction of microorganisms in soil are uncultured, or have extremely few cultured representatives.
- -Metabolic capabilities, ecological roles of these microorganisms are unknown.
- -Access to their genomes of such lineages could greatly enhance our understanding of their importance, ecological role in soil.

#### •*Goal*:

-Targeted genomic and metagenomic analysis of novel yet-uncultured, and poorly characterized bacterial lineages in soil.

### •Approaches:

- -A single cell genomics approach to access genomes of novel uncultured lineages in soil.
- -Novel, creative high-throughput strategies to isolate novel microbes.
- -Targeted metagenomic approaches to resolve complexity, and improve binning of microbial metagenomes.

## I. Exploring and documenting biological diversity within Oklahoma soils –C. Functional diversity

#### •Rationale

- -Metagenomic soil studies have found a large fraction of novel, unknown genes.
- -Extensive functional redundancy within microorganisms and metagenomes.

#### •Goals:

- -Understanding functions of genes with yet-unknown functions?
- -Understanding factors govern gene evolution in soil microorganisms?

### •Approaches:

- -Metagenomic analysis for partial genomic reconstruction using few selected soil samples.
- -Coupling metagenomics to Structure activity relationship studies to gain novel insights into protein activity, folding, and evolution of key protein families (Genomic biophysics).

# II. Elucidation of factors influencing microbial diversity and community structure in soils

#### • Rationale:

- Various edaphic, climatic, or land usage factors shape microbial diversities.
- Correlations between microbial community structure/diversity and abiotic factors are unclear.
- Multiple correlations of factors could effect specific aspects of diversity and community structure.
- Prior studies were simplistic, usually assessing the effect of single factor on microbial community structure/diversity.

### • Approach:

- Temporal and spatial investigations of soil samples across all soil types, habitats and climates, and soil usages.
- Detailed analysis of soil properties, characteristics, activities, compositions.
- Detailed phylogenetic and functional analysis of communities per samples.
- Statistical approach to correlate specific factor or combination of factors to observed community structure.

## Outreach

- *Active involvement* of regional universities at different geographic locations in the state in sampling, investigation of soil properties, laboratory experiments, and analysis.
- Active participation of undergraduates through REU opportunities.
- Opportunities for high school students to join research laboratories in the summer.
- Developing summer and intersession courses.
- Annual soil scientists meetings, hosting international meeting of microbiology/ecology/soil sciences.

## This project is.....

## A multi-University

OSU, OU, UT, Cameron University, Northeastern State University (and potentially ALL Regional Oklahoma Universities.

### multidisciplinary effort

Microbiologists, Soil scientists, Ecologists, Bioinformaticians, Computer scientists, Biophysicists, Statisticians, and Meteorologists.

#### with a focused theme

Exploring and understanding biological diversity in Oklahoma soils.

## that leverages existing capacity, capabilities

DNA sequencing capacity, Cyber and computational capacity, strong nucleus of soil microbiologists/microbial ecologists.

### while adding new expertise

Biostatistician, single cell biology, systems biology, genomic biophysics, and soil mycologist.

