Replacement of Critical Materials

A multidisciplinary topic to be considered as an Oklahoma NSF/EPSCOR Proposal

Critical Materials

Required for essential economic uses
Uncertain supply or availability
Technological limitations
Political / geographical conditions
Economical issues

Examples:

- Rare Earth Elements
- Tellurium
- Lithium
- Precious metals
- Indium / Gallium

Application of Critical Materials

These materials are used in:

- Oil refining (gasoline and diesel fuels)
 Batteries
- Solar cells
- Lasers
- Touch-screen displays
 Cell phones
 Computers
 Magnets (wind turbines)
 Electric cars
 Fertilizers

Research Funding Opportunities

National Science Foundation

Materials Genome Initiative for Global Competitiveness Designing Materials to Revolutionize and Engineer our Future

Division of Chemistry

Two out of four goals of the Division:

Exploring earth-abundant, inexpensive and benign alternatives to rare, expensive and toxic chemicals. Examples: In, Ge, rare earth elements and Pt metals.

Developing efficient recognition/sequestration and recycling of key elements essential for sustainability, for example P and rare earths.

Department of Energy

Critical Materials Strategy

Clean energy technologies, including wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting, use materials at risk of supply disruptions in the short term.

Why us ?

Relevant research experience in Oklahoma

- Catalysis
 Electronics
- Lasers
- Materials Science
- Inorganic chemistry
- Batteries
- Ceramics
- Materials characterization
- Separation processes

Nanotubes
Geology
Geological Survey
Life-cycle assessment
Global economics

Research Opportunities

Geo-political-economical aspects of technologies depending on critical materials

Critical

Materials

chemical and physical characteristics of critical materials

- Crystallography
- DFT analysis
- Electronic structure
- Surface species

Recovery, separation, recycling Life-cycle assessment test replacement in specific applications

- Batteries
- Catalysts
- Lasers
- Transparent conductors

Participants

Daniel E. Resasco (Chem. Eng) Friederike Jentoft (Chem. Eng) Steven Crossley (Chem. Eng) Alberto Striolo (Chem. Eng) Patrick McCann (Electr. Eng) Zhisheng Shi (Electr. Eng) Elizabeth Butler (Civil Eng) Georgia Kosmopoulou (Economics) Jim Smay (OSU – Materials) Dale Teeters (U. Tulsa – Chemistry) Robert Houser (Chemistry) • CCEW OU – Daniel Pullin et al.

